Surface wettability analysis using a microdroplet: a numerical approach
DOI:
https://doi.org/10.32397/tesea.vol6.n1.676Keywords:
Surface wettability, D2Q9 model, LBM, Solid-fluid interaction parameter, Contact angleAbstract
Analysis of hydrophobicity is essential for learning about the characteristics of molecules, surfaces, and materials that reject water. Using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann approach with a D2Q9 model, this work examines the influence of solid-fluid interaction strength on wettability and hydrophobicity of smooth surfaces. To ascertain the contact angle and assess the accuracy of the numerical model, the study considers the equilibrium state of a water droplet on a smooth surface. In a 200×200 lattice unit domain, droplets having a radius of 60 lattice units are used to assess the hydrophobicity of smooth surfaces. According to the research, there is a large rise in the contact area between solid walls and water droplets when the solid-fluid interaction parameter is raised, which leads to a greater degree of hydrophobicity. By measuring the contact angle between the solid and fluid-vapor interface for different surfaces, it is observed that as G_ads becomes more negative, the contact angle decreases, indicating increased surface hydrophobicity, and the effect on droplet spreading is also highlighted in the research.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ganesh Meshram, Gloria Biswal, Ashish Khelkar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License, which allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.