Closed loop battery current controlled zeta converter for improved power quality in electric vehicle charging stations
DOI:
https://doi.org/10.32397/tesea.vol5.n2.569Keywords:
Electric Vehicle, Electric Vehicle Charging Station, Power Quality, Zeta Converter, PI Controller, Battery chargerAbstract
To encourage an eco-friendly environment and pollution-free transportation, most of the automobile industries are promoting electric vehicles. However, with the adoption of electric vehicles, various power quality problems are encountered mainly during vehicle battery charging. Thus, this research work focuses on power quality improvement in electric vehicle battery charging stations. In this article, a closed-loop battery current-controlled zeta converter with a PI controller is introduced to achieve quality power to charge electric vehicles. The proposed converter enhances the overall performance of the system by reducing voltage fluctuations, harmonic content, and frequency variations. Besides, this suggested closed-loop battery-controlled zeta converter improves the power factor and overall efficiency of the system. The converter provides a wide range of output with ripple-free current. In the proposed scheme, the vehicle battery current feedback to the PI controller generates the switching pulses, thereby generating the desired duty ratio to operate the converter to maintain a constant current. The entire system is implemented in MATLAB/Simulink and various power quality parameters namely voltage and current characteristics, active and reactive power characteristics, frequency, total harmonic distortion (THD), power factor, and efficiency are measured. To validate the usefulness of the proposed scheme, it is compared with conventional buck converter-based charging station and conventional zeta converter-based charging station. From the results, it is found that the proposed closed-loop battery current-controlled zeta converters charging station produce improved power quality characteristics over conventional methods. It achieved a voltage THD of 4.93%, current THD of 1.9%, power factor of 0.96, and efficiency of 91.8%, which are far better than the conventional buck and zeta models.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sugunakar Mamidala, Y. V. Pavan Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License, which allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.