##plugins.themes.bootstrap3.article.main##

Diego Anzola Julio Castro Diego Giral

Abstract

El análisis del flujo óptimo es un problema complejo y desafiante por sus características no lineales. La inclusión de restricciones de potencia y los modelos de las líneas de transmisión hacen complejo determinar el respectivo despacho. Los multiplicadores de Lagrange son un método de optimización clásico que permite solucionar problemas de despacho económico de múltiples variables sujetas con diversas restricciones. Este articulo presenta el desarrollo de una herramienta de simulación denominada SOPF (Software Optimal Power Flow), desarrollada en Guide-Matlab y que permite analizar el problema de flujo óptimo clásico de un sistema de potencia con pérdidas y con restricciones de potencia activa, el simulador desarrollado es un herramienta académica de apoyo para los estudiantes, profesores y personas interesadas en la aplicación de algoritmos de optimización para la operación económica de sistemas eléctricos de potencia. Como métricas, el simulador determina el despacho de la potencia activa de cada generador, los costos de generación de la potencia despachada, el aporte de cada máquina, los costos incrementales y las pérdidas de acuerdo al balance de potencia. Finalmente, los resultados se presentan a través de dos casos de estudio: flujo óptimo clásico con pérdidas y sin restricciones de potencia activa y flujo óptimo clásico con pérdidas y con restricciones de potencia activa. Para ambos casos, se obtienen errores inferiores al 1 %.

How to Cite

Anzola, D., Castro, J., & Giral, D. (2021). Herramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de Lagrange. Transactions on Energy Systems and Engineering Applications, 2(1), 1-16. https://doi.org/10.32397/tesea.vol2.n1.1

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

References
Alvarez-Bustos, A., Kazemtabrizi, B., Shahbazi, M., and Acha-Daza, E. (2021). Universal branch model for the solution of optimal power flows in hybrid AC/DC grids. International Journal of Electrical Power & Energy Systems, 126:106543. doi:https://doi.org/10.1016/j.ijepes.2020.106543.

Bukhsh, W., Edmunds, C., and Bell, K. (2020). OATS: Optimisation and Analysis Toolbox for Power Systems. IEEE Transactions on Power Systems, 35(5):3552–3561. doi:10.1109/TPWRS.2020.2986081.

Castro Rico, J. E., Anzola Bustos, D. A., and Giral, D. (2019). Software en Matlab para el flujo óptimo clásico parael despacho hidrotérmico. PhD thesis, Universidad Distrital Francisco José de Caldas.

Chaudhary, R., Sethi, S., Keshari, R., and Goel, S. (2012). A study of comparison of Network Simulator -3 and Network Simulator -2. International Journal of Computer Science and Information Technologies.

Chen, H., Ngan, H., and Zhang, Y. (2016). Power system optimization: large-scale complex systems approaches. John Wiley & Sons.

Cuffe, P. (2020). Optimization and Visualization Tools for Situational Awareness in Highly Renewable Power Systems. In 2020 6th IEEE International Energy Conference (ENERGYCon), pages 930–933. doi:10.1109/ENERGYCon48941.2020.9236524.

Das, J. C. (2017). Load flow optimization and optimal power flow. Crc Press.

Grisales-Noreña, L.F., Garzón-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., and Rodriguez-Cabal,M.A. (2020). Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks. Transactions on Energy Systems and Engineering Applications, 1(1):13–31. doi:10.32397/tesea.vol1.n1.2.

Hasan, F., Kargarian, A., and Mohammadi, A. (2020). A survey on applications of machine learning for optimal power flow. In 2020 IEEE Texas Power and Energy Conference, TPEC 2020. doi:10.1109/TPEC48276.2020.9042547.

Ilyas, A. M., Suyuti, A., Gunadin, I. C., and Siswanto, A. (2020). Optimal Power Flow the Sulselrabar 150 KV system before and after the penetration of wind power plants considering power loss and generation costs. IOP Conference Series: Materials Science and Engineering, 850:12030. doi:10.1088/1757-899x/850/1/012030.

Ma, X. and Elia, N. (2019). Optimization Dynamics: A Bus-Level Distributed Approach for Optimal Power Flows. IEEE Transactions on Control of Network Systems, 6(2):642–652. doi:10.1109/TCNS.2018.2864140.

Montoya, O. D. (2017). Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation. Ingeniería y Ciencia, 13(26):39–63. doi:10.17230/ingciencia.13.26.2.

Pinheiro, R. B. N. M., Nepomuceno, L., and Balbo, A. R. (2020). Solving large-scale reactive optimal power flow problems by a primal–dual M2BF approach. Optimization and Engineering, 21(2):485–515. doi:10.1007/s11081-019-09451-4.

Thurner, L., Scheidler, A., Schäfer, F., Menke, J., Dollichon, J., Meier, F., Meinecke, S., and Braun, M. (2018). Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Transactions on Power Systems, 33(6):6510–6521. doi:10.1109/TPWRS.2018.2829021.

Wood, A. J., Wollenberg, B. F., and Sheblé, G. B. (2013). Power generation, operation, and control. John Wiley & Sons.
Section
Articles