Numerical Study in Effect of Thermal Slip on Two Fluid Flow in a Vertical Channel
DOI:
https://doi.org/10.32397/tesea.vol4.n2.517Keywords:
Vertical channel, Micropolar fluid, Thermal slip, Magneto hydrodynamics, Runge-Kutta methodAbstract
The present study investigates the effect of thermal slip on an immiscible flow of micropolar and viscous fluids in a vertical channel. The left boundary is subjected to thermal slip with appropriate boundary and interface conditions, resulting in a linked system of nonlinear partial differential equations. The ND Solve technique in Mathematica software is used to implement the Runge-Kutta method of the sixth order. The velocity, temperature, and concentration equations are then calculated. The mass, heat, and velocity transmission rates at the boundaries were recorded for all the variations in the governing parameters. In addition, the impact of relevant parameters on various physical properties of micropolar and viscous fluids is analyzed through graphical means. The results are then discussed in detail. Thermal slip, Grashof number, molecular number, magnetic parameter, and Reynolds number are crucial factors that significantly affect heat and mass transfer in fluid flow. The effect of the increased thermal slip is noted to result in a decrease in both the velocity profile and temperature. It was also observed that higher values of Grashof and molecular Grashof numbers led to increased velocity and angular velocity.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Vasavi Cheruku, B. Ravindra Reddy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License, which allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.