Jose David Beltrán Gallego Leidy Daniela Castro Montilla Alexandra Castro Valencia Camilo Augusto Giraldo Muñoz Dahiana López García


The growing demand for electricity in the world has led to power systems having to constantly increase their generation capacity and expand their transmission and distribution systems. Consequently, distributed generation has positioned as a technology able to integrate generation close to consumption centers, freeing up capacity in the transport systems, which can be translated into a deferral of investments in network expansion. Therefore, this paper analyzes the impact of the inclusion of distributed generation in the congestion of a typical distribution network and evaluates the potential of providing the island operation capability ancillary service in a section of the system to identify the possible challenges and benefits that the development of this technical support service could have in typical Colombian distribution networks.

How to Cite

Beltrán Gallego, J., Castro Montilla, L., Castro Valencia, A., Giraldo Muñoz, C., & López García, D. (2021). Impacts of the Inclusion of Distributed Generation on Congestion of Distribution Networks and in the Islanding Operation Capability. Transactions on Energy Systems and Engineering Applications, 2(2), 15-22. https://doi.org/10.32397/tesea.vol2.n2.3


Download data is not yet available.


[1] F. P. Sioshansi, Smart Grid - Integrating Renewable, Distributed & Efficient Energy, Menlo Ener. 2012.
[2] S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and active distribution networks. 2009.
[3] J. A. Gonz´alez, “An´alisis t´ecnico para la implementaci´on de la capacidad de operaci´on por isla a partir de la generaci´on distribuida proveniente de cogeneraci´on,” Universidad Nacional de Colombia, sede Manizales Facultad, 2020.
[4] H. D. Mathur, “Enhancement of power system quality using distributed generation,” PECon2010 - 2010 IEEE Int. Conf. Power Energy, pp. 567–572, 2010, doi: 10.1109/PECON.2010.5697646.
[5] J. D. Mina-Casaran, D. F. Echeverry, and C. A. Lozano, “Demand response integration in microgrid planning as a strategy for energy transition in power systems,” IET Renew. Power Gener., vol. 15, no. 4, pp. 889–902, 2021, doi: 10.1049/rpg2.12080.
[6] J. D. Mar´ın Jim´enez, “An´alisis para la provisi´on del Servicio Complementario de Capacidad de Operaci´on por Islas a partir de Recursos Energ´eticos Distribuidos en ambientes desregulados,” Universidad Nacional de Colombia, 2017.
[7] J. D. Mar´ın-Jim´enez, S. X. Carvajal-Quintero, and A. Arango-Manrique, “Discusi´on de la implementaci´on en Colombia del servicio complementario capacidad de operaci´on por islas,” Energ´etica, vol. 0, no. 43, pp. 99–108, 2014.
[8] S. P. Chowdhury, S. Chowdhury, and P. A. Crossley, “UK scenario of islanded operation of active distribution networks with renewable distributed generators,” Int. J. Electr. Power Energy Syst., vol. 33, no. 7, pp. 1251–1255, 2011, doi: 10.1016/j.ijepes.2011.01.004
[9] IEEE Standards Coordinating - Committee 21, IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, no. July. 2011.
[10] A. O. Egorov, S. A. Eroshenko, V. O. Samoylenko, P. V. Kolobov, and D. A. Glushkov, “Island Mode of Low Capacity Generators Operation,” Adv. Mater. Res., vol. 1008–1009, pp. 426–429, Aug. 2014, doi:10.4028/www.scientific.net/AMR.1008-1009.426.
[11] O. Palizban and K. Kauhaniemi, “Microgrid control principles in island mode operation,” in 2013 IEEE Grenoble Conference, Jun. 2013, pp. 1–6, doi: 10.1109/PTC.2013.6652453.
[12] D. L´opez-Garc´ıa, “Caracterizaci´on de un esquema remunerativo para la participaci´on de la demanda en la prestaci´on del servicio complementario de control de frecuencia en el mercado el´ectrico colombiano,” 2019.
[13] J. Munsch, “Formaci´on intencional de islas en sistemas el´ectricos de potencia con generaci´on e´olica,” 2014.
[14] P. F. V´asquez Miranda and N. R. Fabara Tobar, “Propuesta para lograr la Operaci´on en Isla Intencional de un Sistema real de Distribuci´on que dispone de Generaci´on Distribuida,” in XXVII Jornadas en Ingenier´ıa El´ectrica y Electr´onica, 2017, vol. 27, pp. 201–208
[15] IEEE Distribution System Analysis Subcommittee, “IEEE 37 NodeTest Feeder.” 1992.
[16] XM SA ESP, “Pronostico oficial de demanda,” 2020. https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/5208.
[17] J. C. Hernandez, A. Medina, and F. Jurado, “Optimal allocation and sizing for profitability and voltage enhancement of PV systems on feeders,” Renew. Energy, vol. 32, no. 10, pp. 1768–1789, Aug. 2007, doi: 10.1016/j.renene.2006.11.003.
[18] Universidad Nacional de Colombia: Grupo de Investigaci´on Environmental energy and education policy e3p, “Base de datos panel solar fotovoltaico Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Bloque W.”
[19] V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE J. Power Energy Syst., vol. 3, no. 4, pp. 365–379, Dec. 2017, doi: 10.17775/CSEEJPES.2017.00030.
[20] G. Antonova, M. Nardi, A. Scott, and M. Pesin, “Distributed generation and its impact on power grids and microgrids protection,” 2012 65th Annu. Conf. Prot. Relay Eng., pp. 152–161, 2012, doi:10.1109/CPRE.2012.6201229.