S. Dhivya R. Arul


The number of distributed environmentally friendly energy sources and generators necessitates new operating methods and a power network board to preserve or even increase the efficiency and quality of the power supply. Similarly, the growth of matriculates promotes the formation of new institutional systems, in which power and power exchanges become increasingly essential. Because of how an inactive entity traditionally organizes distribution systems, the DG’s connection inevitably changes the system’s qualifications to which it is connected. As a consequence of the Distributed Generation, this presumption is currently legal and non-existent. This article glides on demand side management and analysis on distributed energy resources. Investigation of DSM along with zonal wise classification has been carried out in this survey. Its merits and applications are also presented.

How to Cite

Dhivya, S., & Arul, R. (2021). Demand Side Management Studies on Distributed Energy Resources: A Survey*. Transactions on Energy Systems and Engineering Applications, 2(1), 17-31. https://doi.org/10.32397/tesea.vol2.n1.2


Download data is not yet available.


Arul, R., Ravi, G., & Sangoden, V. (2006). Artifical Intelligent Solutions to Energy Management Problems. National conference on computational intelligence to emerging electric power systems. Puducherry, India: Pondicherry Engineering College.
Celik, B., Roche, R., Bouquain, D., & Miraoui, A. (2018). Decentralized Neighborhood Energy Management With Coordinated Smart Home Energy Sharing. IEEE Transactions on Smart Grid, 9(6), 6387-6397. doi:10.1109/TSG.2017.2710358
Che, L., Shahidehpour, M., Alabdulwahab, A., & Al-Turki, Y. (Noviembre de 2015). Hierarchical Coordination of a Community Microgrid With AC and DC Microgrids. IEEE Transactions on Smart Grid, 6(6), 3042-3051. doi:10.1109/TSG.2015.2398853
Cheng, P.-H., Huang, T.-H., Chien, Y.-W., Wu, C.-L., & Fu, L.-C. (5-8 de Octubre de 2017). Demand-side management in residential community realizing sharing economy with bidirectional PEV. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff, AB, Canada: IEEE. doi:10.1109/SMC.2017.8122846
Hasib, A. A., Nikitin, N., & Natvig, L. (2014). Load scheduling in smart buildings with bidirectional energy trading. IEEE 33rd International Performance Computing and Communications Conference (IPCCC). Austin, TX, USA: IEEE. doi:10.1109/PCCC.2014.7017039
Hsu, Y.-Y., & Su, C.-C. (Agosto de 1991). Dispatch of direct load control using dynamic programming. IEEE Transactions on Power Systems, 6(3), 1056 - 1061. doi:10.1109/59.119246
Kamal, M., Assi, C., Maier, M., & Uddin, M. (Enero de 2014). Smart Microgrids: Optimal Joint Scheduling for Electric Vehicles and Home Appliances. IEEE Transactions on Smart Grid, 5(1), 239250. doi:10.1109/TSG.2013.2290894
Kim, B.-G., Ren, S., van der Schaar, M., & Lee, J.-W. (2013). Bidirectional Energy Trading and Residential Load Scheduling with Electric Vehicles in the Smart Grid. IEEE Journal on Selected Areas in Communications, 31(7), 1219-1234. doi:10.1109/JSAC.2013.130706
Kim, H.-M., Kinoshita, T., & Shin, M.-C. (2010). A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment. Energies, 3(12), 1972-1990. doi:10.3390/en3121972
Kim, H.-M., Lim, Y., & Kinoshita, T. (2012). An Intelligent Multiagent System for Autonomous Microgrid Operation. Energies, 5(9), 3347-3362. doi:10.3390/en5093347
Kinhekar, N., Padhy, N. P., & Gupta, H. O. (Febrero de 2014). Multiobjective demand side management solutions for utilities with peak demand deficit. International Journal of Electrical Power & Energy Systems, 55, 612-619. doi:10.1016/j.ijepes.2013.10.011
Kuo, H.-H., Pradhan, S. K., Wu, C.-L., Cheng, P.-H., Xie, Y., & Fu, L.-C. (2016). Dynamic demand-side management with user's privacy concern in residential community. 2016 IEEE International Conference on Automation Science and Engineering (CASE). Fort Worth, TX, USA: IEEE. doi:10.1109/COASE.2016.7743526
Liu, Y., Yuen, C., Huang, S., Hassan, N. U., & Wang, X. X. (Diciembre de 2014). Peak-to-Average Ratio Constrained Demand-Side Management With Consumer's Preference in Residential Smart Grid. IEEE Journal of Selected Topics in Signal Processing, 8(6), 1084-1097. doi:10.1109/JSTSP.2014.2332301
Logenthiran, T., Srinivasan, D., & Shun, T. Z. (Septiembre de 2012). Demand Side Management in Smart Grid Using Heuristic Optimization. IEEE Transactions on Smart Grid, 3(3), 1244-1252. doi:10.1109/TSG.2012.2195686
Moghaddam Arani, M. F., & I. Mohamed, Y. A.-R. (Noviembre de 2018). Cooperative Control of Wind Power Generator and Electric Vehicles for Microgrid Primary Frequency Regulation. IEEE Transactions on Smart Grid, 9(6), 5677-5686. doi:10.1109/TSG.2017.2693992
Nguyen, D. T., & Le, L. B. (Septiembre de 2014). Joint Optimization of Electric Vehicle and Home Energy Scheduling Considering User Comfort Preference. IEEE Transactions on Smart Grid, 5(1), 188-199. doi:10.1109/TSG.2013.2274521
Nikmehr, N., & Ravadanegh, S. N. (Julio de 2015). Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids. IEEE Transactions on Smart Grid, 6(4), 1648 - 1657. doi:10.1109/TSG.2015.2396992
Nikmehr, N., & Ravadanegh, S. N. (2016). Reliability evaluation of multi-microgrids considering optimal operation of small scale energy zones under load-generation uncertainties. International Journal of Electrical Power & Energy Systems, 78, 80-87. doi:10.1016/j.ijepes.2015.11.094
Ogwumike, C., Short, M., & Denai, M. (2015). Near-optimal scheduling of residential smart home appliances using heuristic approach. 2015 IEEE International Conference on Industrial Technology (ICIT). Seville, Spain: IEEE. doi:10.1109/ICIT.2015.7125560
Olivares, D. E., Cañizares, C. A., & Kazerani, M. (2014). A Centralized Energy Management System for Isolated Microgrids. IEEE Transactions on Smart Grid, 5(4), 1864 - 1875. doi:10.1109/TSG.2013.2294187
Peças Lopes, J. A., Soares, F. J., & Rocha Almeida, P. M. (Enero de 2011). Integration of Electric Vehicles in the Electric Power System. Proceedings of the IEEE, 99(1), 168 - 183. doi:10.1109/JPROC.2010.2066250
Sheikhi, A., Bahrami, S., & Ranjbar, A. M. (2015). An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy, 89, 490-499. doi:10.1016/j.energy.2015.05.109
Sheikhi, A., Rayati, M., & Ranjbar, A. (Julio de 2016). Dynamic load management for a residential customer; Reinforcement Learning approach. Sustainable Cities and Society, 24, 42-51. doi:10.1016/j.scs.2016.04.001
Sheikhi, A., Rayati, M., Bahrami, S., & Ranjbar, A. M. (9 de Enero de 2015). Integrated Demand Side Management Game in Smart Energy Hubs. IEEE Transactions on Smart Grid, 6(2), 675 - 683. doi:10.1109/TSG.2014.2377020
Sherif, H., Zhu, Z., & Lambotharan, S. (2014). An optimization framework for home demand side management incorporating electric vehicles. 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). Kuala Lumpur, Malaysia: IEEE. doi:10.1109/ISGT-Asia.2014.6873764
Song, N.-O., Lee, J.-H., Kim, H.-M., Im, Y. H., & Lee, J. Y. (2015). Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations. Energies, 8(8), 8371-8390. doi:10.3390/en8088371
Tian, P., Xiao, X., Wang, K. D., & Ruoxing. (Septiembre de 2016). A Hierarchical Energy Management System Based on Hierarchical Optimization for Microgrid Community Economic Operation. IEEE Transactions on Smart Grid, 7(5), 2230-2241. doi:10.1109/TSG.2015.2470551
Tsikalakis, A. G., & Hatziargyriou, N. D. (2011). Centralized control for optimizing microgrids operation. 2011 IEEE Power and Energy Society General Meeting. Detroit, MI, USA: IEEE. doi:10.1109/PES.2011.6039737
Turker, H., Hably, A., & Bacha, S. (2013). Housing peak shaving algorithm (HPSA) with plug-in hybrid electric vehicles (PHEVs): Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G) concepts. 4th International Conference on Power Engineering, Energy and Electrical Drives. Istanbul, Turkey: IEEE. doi:10.1109/PowerEng.2013.6635704
Wang, Y., Mao, S., & Nelms, R. M. (Dicembre de 2015). On Hierarchical Power Scheduling for the Macrogrid and Cooperative Microgrids. IEEE Transactions on Industrial Informatics, 11(6), 15741584. doi:10.1109/TII.2015.2417496
Wang, Z., Chen, B., Wang, J., & Chen, C. (Enero de 2016). Networked Microgrids for Self-Healing Power Systems. IEEE Transactions on Smart Grid, 7(1), 310-319. doi:10.1109/TSG.2015.2427513
Wang, Z., Chen, B., Wang, J., & kim, J. (2016). Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes. IEEE Transactions on Smart Grid, 7(2), 1097-1105. doi:10.1109/TSG.2015.2427371
Zhang, F., Zhao, H., & Hong, M. (Diciembre de 2015). Operation of networked microgrids in a distribution system. CSEE Journal of Power and Energy Systems, 1(4), 12-21. doi:10.17775/CSEEJPES.2015.00043
Zhang, W., Chen, G., Su, Y., Dong, Z., & Li, J. (2014). A dynamic game behavior: Demand side management based on utility maximization with renewable energy and storage integration. 2014 Australasian Universities Power Engineering Conference (AUPEC). Perth, WA, Australia: IEEE. doi:10.1109/AUPEC.2014.6966581
Zhu, Z., Tang, J., Lambotharan, S., Chin, W. H., & Fan, Z. (16-20 de Enero de 2012). An integer linear programming based optimization for home demand-side management in smart grid. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT). Washington, DC, USA: IEEE. doi:10.1109/ISGT.2012.6175785
Zou, N., Qian, L., Attia, J., & Xie, L. (2012). Optimization of Home Energy Usage by Intelligently Charging/Discharging EV/PHEV. 2012 International Conference on Connected Vehicles and Expo (ICCVE). Beijing, China: IEEE. doi:10.1109/ICCVE.2012.70