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Abstract: This study investigates the performance of diode-based photovoltaic (PV) modules models
by analyzing their effectiveness in predicting the electric behviour under conventional solar irradiation
and low-concentration photovoltaic (LCPV) conditions. The parameters of one-diode (1-DM), two-diode
(2-DM), three-diode (3-DM) and four-diode models (4-DM) are first extracted using the particle
swarm optimization technique (PSO) and validated through a comparative analysis with experimental
measurements carried out on a PV module (ISOFOTON 106 W-12 V) in real-world temperature and
irradiation conditions of 27.2°C and 755W/m2, respectively. The findings reveal that the 4-DM exhibits
the minimum deviation from experimental data in predicting key performance metrics such as short-circuit
current (Isc), open-circuit voltage (Voc), and maximum output power (Pm). However, this increased
accuracy comes at the cost of higher computational complexity in optimizing the 4-DM’s parameters. The
studies carried out under several low-concentration photovoltaic conditions show clearly the limitation
of the 1-DM in terms of predicted (Pm), efficiency, and fill factor (FF). Indeed, the gaps in the obtained
values of efficiency and FF with respect to the 4-DM increase with the concentration ratio and reach
0.74% and 0.04, respectively, at 3 suns. The performances obtained with the 2-DM and 3-DM remain
stable and close to those of the 4-DM with constant gaps in the obtained values of efficiency and FF,
remaining close to 0.1% and 0.01, respectively, regardless of the concentration ratio. The insights gained
from this work underscore the significance of selecting an appropriate PV model for LCPV systems,
balancing accuracy and computational efficiency.

© 2026 by the authors. Published by Universidad Tecnológica de Bolívar under the terms of the Creative Commons Attribution 4.0

License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation,

and DOI. https://doi.org/10.32397/tesea.vol7.n1.931

How to cite this article: Olfa, BEL HADJ BRAHIM KECHICHE; Mahmoud, HAMOUDA; Aissa, CHOUDER. One-
and multi-diode PV module models: PSO-based parameter extraction and performance evaluation under conventional and

Trans. Energy Syst. Eng. Appl., 7(1): 931, 2026 revistas.utb.edu.co/tesea

https://revistas.utb.edu.co/tesea
https://crossmark.crossref.org/dialog/?doi=10.32397/tesea.vol7.n1.931&amp;domain=pdf
https://orcid.org/0000-0003-1015-2369
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.32397/tesea.vol7.n1.931
https://revistas.utb.edu.co/tesea


Transactions on Energy Systems and Engineering Applications, 7(1): 931, 2026 2 of 21

1. Introduction

The increasing global demand for renewable energy has driven significant advancements in solar
photovoltaic (PV) technology, with a particular focus on improving the efficiency and performance of PV
systems under various operating conditions. In 2023, solar PV power generation increased by a record 320
TWh, up by 25% from 2022, accounting for 5.4% of total global electricity generation, [1–3]. Among
the key areas of research is the modelling of photovoltaic cells, modules and farms, which is essential
for understanding their behaviour and optimizing their performance. Accurate modelling of PV modules
enables the prediction of their electrical characteristics under different environmental conditions, such as
varying irradiation and temperature, which are critical for designing efficient solar energy systems, [4,5]. In
this context, diode-based models, including the one-diode (1-DM), two-diode, (2-DM) three-diode (3-DM),
and four-diode models (4-DM), have been developed to reproduce the electrical behaviour of solar PV
cells and modules. Each of these models offers different levels of complexity and accuracy, making them
suitable for different applications and operating conditions, [6, 7].

Concentration photovoltaic (CPV) systems, which use optical devices such as lenses or mirrors to focus
sunlight on PV modules, have gained attention for their ability to enhance energy output. CPV systems are
typically classified into three categories based on the concentration ratio: low-concentration photovoltaic
(LCPV, less than 10x), medium-concentration photovoltaic (MCPV, 10x to 100x), and high-concentration
photovoltaic (HCPV, greater than 100x). LCPV systems, in particular, are of interest for commercial
applications due to their moderate concentration levels, which can be achieved without the need for
complex optical systems. However, the performance of PV modules under concentrated light is influenced
by several factors, including increased temperature, recombination effects, and non-ideal behaviors, which
become more pronounced under high irradiation. Therefore, understanding the accuracy of different
diode-based models under concentrated light is crucial for optimizing LCPV systems, [8–12]. The 1-DM,
while simple and widely used, has limitations in accurately capturing the behavior of PV cells under high
irradiance, particularly due to its neglect of recombination effects. As a result, more complex models
such as the 2-DM, 3-DM and 4-DM have been developed to better represent the physical phenomena
occurring in PV cells under concentrated light. These models incorporate additional diodes to account for
recombination currents and other non-ideal effects.

Several studies have investigated methods for estimating PV module parameters, particularly for 1-DM
and multi-diode models. Some works have employed heuristic optimization algorithms such as Particle
Swarm Optimization (PSO), Genetic Algorithms (GA), and Hybrid Metaheuristic Techniques to enhance
parameter extraction accuracy, while others have explored analytical and experimental approaches to refine
PV model predictions under various environmental conditions, [13–17]. Yadav et al. [13] analyzed key
factors influencing the performance of single- and multi-diode PV modules, including fill factor, material
properties, and temperature effects. Their study examined how irradiance variations affect efficiency and
system output, providing insights into optimizing PV module design. Meng et al. [14] introduced an
efficient method for extracting parameters of the 2-DM using only standard test condition (STC) data from
manufacturer datasheets. Their approach, combining initial parameter estimation with a mountain-climbing
algorithm, demonstrated superior accuracy in modeling I-V characteristics, particularly at the maximum
power point. Kullampalayam Murugaiyan et al. [15] and Qais et al. [16] proposed advanced hybrid
methods for parameter estimation in 3-DM. Murugaiyan et al. combined a Reinforced Learning-Based
Parrot Optimizer (RLPO) with an Adaptive Secant Method (ASM) to enhance search adaptability and
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convergence speed, while Qais et al. integrated an analytical approach with the Sunflower Optimization
Algorithm (SFOA) to refine parameter estimation. Both methods effectively addressed nonlinearities and
recombination losses, demonstrating improved accuracy and convergence. Saripalli et al. [17] developed
a hybrid optimization technique for parameter extraction in the 4-DM, combining GA and PSO. Their
approach improved parameter estimation efficiency, enhancing the accuracy of I-V characteristic modeling.

While these studies developed advanced parameter extraction methods for multi-diode PV models,
they did not evaluate their performance under concentrated solar power (CSP) conditions. Similarly,
research on PV module behavior under concentration conditions has largely focused on system-level
analysis rather than refining diode-based models to improve accuracy. Some studies analyzed the impact
of temperature and optical concentration on efficiency, [10–12], but only a few systematically evaluated
different PV models under low-concentration photovoltaic (LCPV) conditions, [18–20]. For instance,
Kumar et al. provided a comprehensive review of solar parabolic dish collectors, emphasizing their potential
for improving concentrated solar thermal systems. However, their work primarily focused on thermal
applications rather than electrical modeling of PV modules. Paul [11] analyzed the application of compound
parabolic concentrators (CPC) in PV conversion, detailing their ability to enhance energy capture. While
this study discussed system-level efficiency improvements, it did not assess the accuracy of diode-based
PV models under concentration conditions. Masood et al. [12] reviewed recent advancements in hybrid
photovoltaic/thermal (PV/T) systems incorporating CPCs, highlighting their thermal management benefits
but lacking a detailed evaluation of different PV models and their parameter estimation strategies. Yadav et
al. [21] specifically examined the effects of temperature and concentration on a commercial silicon-based
PV module in an LCPV system. While their study provided valuable insights into performance variations,
it did not compare different diode-based models to determine their suitability under concentrated light.

In contrast, our study addresses these gaps by conducting a systematic comparative evaluation of 1-DM,
2D-M, 3D-M and 4-DM under different LCPV conditions. Unlike previous works, we focus on parameter
optimization using PSO and assess the trade-off between model complexity and accuracy in predicting key
performance metrics under varying concentration ratios. This approach provides a deeper understanding of
how different PV models respond to concentrated light, contributing to the optimization of LCPV system
designs. Models performances are validated and evaluated through a comparison with experimental data
of a commercial PV module (ISOFOTON 106 W-12V) and using also different indicators such as the
accuracy in estimating the open-circuit voltage, the short-circuit current, the maximum power as well as
the efficiency and fill factor.

This paper is structured as follows: Section 2 and presents an overview of PV module modelling
approaches, detailing the characteristics and parameter estimation methods of the 1-DM, 2-DM, 3-DM,
and 4-DM. Section 3 describes the application of PSO for parameter extraction, including the fitness
function and optimization process. Section 4 focuses on the evaluation of the models performance under
conventional solar irradiation and low concentration highlighting the limitation and suitability of each
model. Finally, Section 5 concludes the study with a summary of key findings and their implications for
LCPV system optimization.

2. Overview of PV modules modeling approaches

2.1. One-diode model (1-DM): 5 parameters

The one-diode equivalent circuit depicted in Figure 1a is widely adopted as the standard approach for
photovoltaic (PV) modules modeling since it makes a good compromise between simplicity and accuracy,
particularly in the context of energy production, [13, 22]. Diode (D1) emulates the recombination losses in
the PN junction. The series resistor (Rs) represents the equivalent ohmic losses due to the flow of current
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through the PV cells. The shunt resistor (Rsh) Represents leakage currents and junction edge effects. Its
impact is typically less significant than (Rs) in a single module but becomes more pronounced in parallel
configurations. Considering the equivalent model depicted in Figure 1a, the relationship between the
current I supplied by the PV module and the voltage V across its terminals is:

I = Iph − Id1 −
V + IRs

Rsh
, (1)

Iph is the photocurrent generated by an ideal PV module and depends on the illuminance and temperature
conditions. Id1 is the current through the ideal diode(D1) determined as:

Id1 = Is1

(
exp

(
q (V + IRs)

n1kbTNs
− 1

))
, (2)

Is1 is the diode saturation current, which is mainly dependent on the temperature condition and bandgap
energy. q = 1.6x10−19C is the electron charge. kb = 1.380649× 10−23 JK−1 is the Boltzmann constant.Ns
is the number of PV cells connected in series. n1 is the ideality factor of D1, which quantifies the deviation
from the ideal diode’s behavior. Replacing eq. (2) into eq. (1) yields the commonly used I-V characteristics
of a one-diode PV module:

I = Iph − Is1

(
exp

(
q (V + IRs)

n1kbTNs
− 1

))
− V + IRs

Rsh
. (3)

Considering the above analytical relationship, it is obvious that the 1-DM relies on five intrinsic
parameters of the PV module, which are Iph, Is1, Rs, Rsh and n1. In general, the 1-DM is easy to
implement, suitable for fast computation and performs well under standard irradiation conditions. However,
it suffers from the drawbacks of low accuracy under non-ideal conditions such as high temperature or low
irradiance and fails to capture complex losses like surface recombination.

2.2. Two-diode model (2-DM): 7 parameters

The 2-DM depicted in Figure 1b uses an additional diode D2 to take account of both bulk and
recombination losses, which become significant under high irradiance and temperature conditions.
Considering this, the relationship between the PV module current I and the voltage across its terminals V
becomes [14, 23, 24]:

I = Iph − Id1 − Id2 −
V + IRs

Rsh
, (4)

Id2 is the current through D2 expressed as follows:

Id2 = Is2

(
exp

(
q (V + IRs)

n2kbTNs
− 1

))
, (5)

Is2 is the saturation current of the second diode D2, representing the recombination current due to carrier
recombination in the solar cells. n2 is the ideality factor of D2. It usually has a value greater than 2,
indicating a higher degree of recombination compared to the first diode. Substituting now eq. (2) and eq. (5)
into (4) yields the analytical equivalent 2-DM of the PV module:

I = Iph − Is1

(
exp

(
q(V+IRs)
n1kbTNs

− 1
))

− Is2

(
exp

(
q(V+IRs)
n2kbTNs

− 1
))

−V+IRs
Rsh

. (6)
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As can be concluded from eq. (6), the 2-DM relies on 7 intrinsic parameters i.e. Iph, Is1, Is2, Rs, Rsh,
n1 and n2. The increased number of parameters compared to the 1-DM improves the model’s accuracy by
accounting for both bulk and surface recombination losses. It is also more suited to variable irradiation and
temperature conditions.

2.3. Three-diode model (3-DM): 9 parameters

Figure 1c depicts the equivalent electrical circuit of a 3-DM, where an additional diode D3 is used as
compared to the 2-DM. The objective is to improve the model accuracy by capturing additional current
losses due to specific leakage effects. Id3 represents the recombination current due to defects, grain
boundaries, and other localized imperfections within the photovoltaic cell, which contribute to additional
current losses and affect the cell’s overall efficiency, particularly under high-stress conditions such as high
temperatures or increased irradiance [25–28]. In view of this, the current supplied by the PV module
becomes:

I = Iph − Id1 − Id2 − Id3 −
V + IRs

Rsh
. (7)

Define Is3 the saturation current of D3 and n3 its ideality factor. Therefore, we can likewise express the
current through D3:

Id3 = Is3

(
exp

(
q (V + IRs)

n3kbTNs
− 1

))
. (8)

Note that n3 has typically a value greater than 3, indicating a higher degree of recombination compared to
the first and second diodes. Substituting now eq. (2), eq. (5) and eq. (8) into eq. (7) yields the 3-DM of the
PV module, typically relying on 9 intrinsic parameters Iph, Is1, Is2, Is3, Rs, Rsh, n1, n2 and n3:

I = Iph − Is1

(
exp

(
q(V+IRs)
n1kbTNs

− 1
))

− Is2

(
exp

(
q(V+IRs)
n2kbTNs

− 1
))

−Is3

(
exp

(
q(V+IRs)
n3kbTNs

− 1
))

− V+IRs
Rsh

. (9)

This model is able to provide high accuracy in a wide range of conditions due to the inclusion
of additional nonlinear effects. However, the high number of parameters increase its complexity and
computational cost.

2.4. Four-diode model (4-DM): 11 parameters

Figure 1d depicts the 4-DM of the PV module. The fourth diode takes account of advanced effects like
degradation or multi-interface phenomena. This makes the 4-DM more accurate and suitable for highly
detailed simulations of PV systems under diverse environmental conditions, [17, 29, 30]. Note that research
papers and scientific works on 4-DM are relatively scarce, as the 3-DM is often sufficient for most practical
purposes. But the 4-DM has been used in advanced simulations in cases where precision is critical [31].
Using the same analytical development methodology of the previous sections, the current Id4 through D4
and the resulting current I supplied by the PV module are derived as follows:

Id4 = Is4

(
exp

(
q (V + IRs)

n4kbTNs
− 1

))
, (10)

I = Iph − Is1

(
exp

(
q(V+IRs)
n1kbTNs

− 1
))

− Is2

(
exp

(
q(V+IRs)
n2kbTNs

− 1
))

−Is3

(
exp

(
q(V+IRs)
n3kbTNs

− 1
))

− Is4

(
exp

(
q(V+IRs)
n4kbTNs

− 1
))

−V+IRs
Rsh

, (11)
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Is4 and n4 are the fourth diode’s saturation current and ideality factor, respectively. n4 typically exceeds
4, indicating a higher degree of recombination compared to the earlier diodes, particularly under stress
conditions. The 4-DM requires the identification of 11 intrinsic parameters Iph, Is1, Is2, Is3, Is4, Rs, Rsh, n1,
n2, n3 and n4. It was introduced in the research literature in recent years with the aim to provide the highest
level of accuracy for predicting the module performance, especially under high levels of temperature and
irradiation. However, the high number of parameters increases gradually its complexity. This model is not
yet well explored in the research literature, particularly from the point of view of parameter identification
and also its behavior under different operating conditions such as low concentration.

(a) (b)

(c) (d)
Figure 1. Equivalent electrical circuits of a PV module (a) One-diode model – (b) two-diode model – (c)
three-diode model – (d) four-diode model.

3. Optimized Parameters extraction of the four PV models

In this section, we explore the extraction of the four PV module models’ key parameters using the
data translation method from the International Standard IEC 6089 and Particle Swarm Optimization
(PSO) algorithm. This approach is essential for optimizing the performance of PV models under different
environmental conditions, including concentration. Through a fine-tuning of each model’s parameters, this
optimization helps in simulating real-world performance more accurately, particularly under non-ideal
conditions such as variations in temperature and irradiance. The results from this optimization process are
then used to validate the models, ensuring that the simulations align with actual PV module behavior.

3.1. Translation of the experimental dataset to the reference conditions

In this study, the focus is placed on the “ISOFOTON 106 W-12 V” PV module, serving as a reference
for parameters extraction considering the four models under study. The PV module’s characteristics as
provided by the manufacturer and corresponding to its original state, i.e. zero operating hours are listed
in Table 1. An experimental test is carried out to collect a database corresponding to the evolution of the
measured PV current and voltage (Imeas and Vmeas) under real environmental condition of temperature
(Tmeas) and irradiation (Gmeas). Figure 2a and Figure 2b illustrate the I-V and P-V curves (red color) derived
from measurements of the ISOFOTON module at Tmeas = 27.2◦C and Gmeas = 755W/m2. Subsequently,
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we translated the obtained data originally collected under non-ideal conditions to STC also referred to as
reference conditions i.e. Tmeas = 25◦C , Gmeas = 1000W/m2 air mass value (AM) equal to l.5. Adopting
the translation method defined by the International Standard IEC 6089, we first determine the open-circuit
voltage and short-circuit current at reference conditions namely ISC,re f , VOC,re f :

ISC,re f = Isc,meas

(
Gre f

Gmeas

)
.
(
1 + Ki(Tre f − Tmeas)

)
, (12)

VOC,re f = Voc,meas + Ns.n1
kbTmeas

q ln
(

Gre f
Gmeas

)
+ Kv(Tre f − Tmeas)

, (13)

Isc,meas, Voc,meas are the short-circuit current and open-circuit voltage obtained from the experimental
measurements. Since n1 is not yet extracted, we will assign the value provided by the technical datasheet
to estimate Voc,re f . Afterwards, we translate each measured current-voltage pair (Imeas, Vmeas) to its
counterpart expected for the reference conditions, namely (Ire f , Vre f ), [32, 33]:

Ire f = Imeas + Isc,re f − Isc,meas, (14)

Vre f = Vmeas + Voc,re f − Voc,meas. (15)

The I-V and P-V curves (blue color) estimated with the translation procedure for the reference conditions
are also depicted on the same Figure 2a and Figure 2b (blue color). It can be seen that translated value
of the short-circuit current Isc,re f is obtained as 6.7 A and remains very close to manufacturer’s specified
value, which is equal to 6.54 A. Likewise, the value of the translated open-circuit voltage Voc,re f is equal to
21.38V and remains in the same range as the 21.6 V specified in the datasheet. The small difference falls
within an acceptable margin and confirms the reliability of the translation method for estimating the PV
module voltage and current in STC.

(a) (b)
Figure 2. (a) I-V and (b) P-V curves obtained with experimental measurements @ Gmeas = 755W/m2,
Tmeas = 27.2 ◦C (red color) and estimated with the translation procedure for the reference conditions
Gre f = 1000W/m2, Tre f = 25 ◦C (blue color).
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Table 1. ISOFOTON 106 W-12 V PV module specifications at STC.

Electrical data at STC

Maximum Power Pm of the PV module (W) 106
Voltage at Maximum Power Point (MPP) Vm (V) 17.4
Current at MPP Im (A) 6.1
Short-circuit current Isc (A) 6.54
Open-circuit voltage Voc (V) 21.6

Electrical Data at NOCT

Temperature TNOCT (◦C) 47

Thermal Ratings

Ki (%/◦C) 0.06
Kv(%/◦C) -0.36

Material Data

Cell Type Mono-crystalline Si
Number of PV cells connected in series (Ns) 36
Number of branches connected in parallel (Np) 2

Internal parameters

Iph (A) 6.7043
Is1 (A) 1.4058 × 10−7

n1 1.1531
Rs (Ω) 0.1516
Rsh (Ω) 110

Physical specifications

Dimensions (mm) 1310/654/39,5
Weight (kg) 11.5
Nominal operating PV cell temperature (◦C) @ 800 W m−2, 20 ◦C, am 1.5, 1 m s−1 47

3.2. Conventional Particle Swarm Optimization (PSO) Based parameters extraction of the four PV models

Particle Swarm Optimization (PSO) is a computational method inspired by the social behavior of birds
flocking or fish schooling. In PSO, a population (swarm) of candidate solutions (particles) is iteratively
updated based on their individual experiences and the experiences of their neighbors. The algorithm aims
to find the optimal solution by adjusting the particles’ positions and velocities in the search space according
to specific mathematical principles. In this section, the conventional PSO is applied to optimize each
diode-model’s parameters (1-DM, 2-DM, 3-DM and 4-DM). The optimization process minimizes the error
between the I-V curve obtained with the predicted parameters and that obtained with the translated data
to the reference conditions [15, 34]. The final objective is to find the parameters set that result in the best
match with the real-world performance of the PV module under varying conditions. The rest of this section
provides a detailed description of the methodology used to optimize the different models’ parameters.
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3.2.1. Initialization

The population of particles is first initialized. Each particle represents a possible solution (set of model
parameters at reference conditions). Considering the 4-DM, the position vector of each particle is defined
as:

xi = [Iph,re f ,i, Is1,re f ,i, Is2,re f ,i, Is3,re f ,i, Is4,re f , Rs,re f ,i, Rsh,re f ,i,
n1,re f ,i, n2,re f ,i, n3,re f ,i, n4,re f ,i]

. (16)

It is worth mentioning that each parameter’s boundary should be properly defined to ensure the correct
convergence of the algorithm. Table 2 shows the appropriate parameters’ boundaries adopted for each
diode-model of the PV module “ISOFOTON 106 W-12 V” serving as a case study in this paper.

Table 2. Boundary conditions for PSO algorithm.

Parameter 1-DM 2-DM 3-DM 4-DM

Iph (A) [5, 8] [5, 8] [5, 8] [5, 8]
Is1 (A) [10−7, 10−4] [10−7, 10−4] [10−7, 10−4] [10−7, 10−4]
Is2 (A) – [10−7, 10−4] [10−10, 10−5] [10−10, 10−5]
Is3 (A) – [10−10, 10−5] [10−10, 10−5]
Is4 (A) – [10−10, 10−5]
Rs (Ω) [0.01, 1] [0.01, 1] [0.01, 1] [0.01, 1]
Rsh (Ω) [0, 400] [0, 400] [0, 400] [0, 400]
n1 [0, 2] [0, 2] [0, 2] [0, 2]
n2 – [0, 5] [0, 5] [0, 5]
n3 – [0, 5] [0, 5]
n4 – [0, 5]

3.2.2. Fitness Function

The fitness function evaluates how well particle’s parameters match the translated data to the reference
conditions. This is typically defined as the root mean square error (RMSE) between the estimated I-V
curve and its counterpart obtained with the translation procedure to the reference conditions:

f (xi) =

√√√√ 1
N

N

∑
j=1

(
Iest,j (xi)− Ire f ,j

)2, (17)

Iest,j (xi) is estimated current at point j based on the particle (xi)’s parameters. Ire f ,j is the current at the
same point j obtained by the translation procedure and considered as a reference value. N is the number of
samples.

3.2.3. Update of velocity and position

The position of each particle (i.e., the model’s parameters) is updated based on the particle’s previous
best position and the global best position found by the swarm as depicted in the flowchart of Figure 3 [35].
The update rules for velocity and position are:

vk+1
i = ωvk

i + c1r1
(

pk
i − xk

i
)
+ c2r2

(
gk − xk

i
)

xk+1
i = xk

i + vk+1
i

, (18)
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vk
i is the velocity of particle xi at iteration k. ω is the inertia weight. c1 and c2 are acceleration coefficients.

r1 and r2 are random numbers between 0 and 1. pk
i is the personal best position of particle xi. gk is the

global best position found by the swarm.

Figure 3. Movement of particles toward the optimal solution.

3.2.4. Convergence and termination

The algorithm iterates until reaching the maximum number of iterations or the defined threshold for
the error between the estimated and reference I-V curves. The process is thereafter repeated for each
diode-based model to extract the parameters that best fit the translated data. The algorithm was tuned to
achieve an optimal balance between accuracy and computational efficiency, with the boundary conditions
set as described in Table 2. The obtained optimized parameters at references conditions for each diode-based
model are shown in Table 3. One key remark that is worth mentioning is the relatively high value of
the estimated resistance in the 1-DM. The impact of this high value on the prediction of power near the
maximum power point (MPP) will be examined in a subsequent section.

Table 3. Optimized parameters obtained at reference conditions.

Parameter 1-DM 2-DM 3-DM 4-DM

Iph,re f (A) 6.709 6.709 6.705 6.703
Is1,re f (A) 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Is2,re f (A) – 6.2875 × 10−8 6.5917 × 10−6 3.69 × 10−6

Is3,re f (A) – – 3.9115 × 10−7 9.5738 × 10−7

Is4,re f (A) – – – 9.748 × 10−7

Rs,re f (Ω) 0.043 0.0431 0.0428 0.070183
Rsh,re f (Ω) 400 400 400 394.99
n1,re f 1.9317 1.9317 1.9377 1.999
n2,re f – 4.4828 4.823 3.819
n3,re f – – 1.615 1.47
n4,re f – – – 4.148
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3.2.5. Validation of the optimized parameters’ extraction procedure

To validate the effectiveness of the optimized extraction procedure and evaluate its complexity, we
compute for each model the RMSE, the Mean Absolute Error (MAE) and the run time. The RMSE and
MAE are the errors between the experimental I-V curve translated to the reference conditions and the
estimated I-V curve obtained by the diode-based model and considering the optimized parameters extracted
at reference conditions. In view of this, the RMSE and MAE are computed as follows:

RMSE =

√√√√ 1
N

N

∑
j=1

(
Iest,j

(
xopt

)
− Ire f ,j

)2, (19)

MAE =
1
N

n

∑
j=1

∣∣Iest,j
(
xopt

)
− Ire f ,j

∣∣, (20)

Iest,j
(
xopt

)
is estimated current at point j using the optimized particle

(
xopt

)
’s parameters. Ire f ,j is the

reference current at the same point j obtained by the translation procedure.
Table 4 summarizes the obtained performances with a 64-bit processor running at 3 GHz. In the

worst case obtained with the 1-DM, the RMSE and MAE do not exceed 0.304 and 0.2336, respectively,
confirming the correct convergence of the PSO algorithm. Moreover, despite the increased complexity of
the 4-DM, we confirmed through the outcome of this section that the conventional PSO algorithm is able to
successfully optimize the 11 parameters of the 4-DM with a higher accuracy. The correct convergence with
this model requires carefully selecting the upper and lower limits of the ideality factor n4.

When the number of parameters increases from 1-DM (5 parameters) to 4-DM (11 parameters),
the computational load increases significantly, with execution time rising from 3.92 seconds to 6.14
seconds. This high cost directly reflects the expansion of the optimization space, which requires broader
exploration, greater computational effort per iteration, and more complex convergence dynamics due to the
interdependencies between parameters. This additional computational load remains acceptable for offline
studies and model identification tasks, where accuracy takes precedence over execution time. However, for
real-time or embedded applications, 2-DM and 3-DM configurations offer a more advantageous trade-off
between accuracy and computational efficiency. 4-DM remains the best choice for detailed simulations and
design optimization, while 1-DM can only be used for quick or low-fidelity estimates.

Practical model selection framework:
The results summarized in Table 4 also serve as a practical decision framework for model selection. The
1-DM is suitable for quick or educational assessments with low computational cost. The 2-DM and 3-DM
configurations offer a balanced compromise between accuracy and efficiency, making them appropriate for
real-time control or embedded MPPT applications. The 4-DM, while more computationally demanding,
provides the highest accuracy and is therefore recommended for offline analysis, detailed simulation, and
design optimization tasks.
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Table 4. Practical complexity and accuracy indicators for the four diode models.

Model Parameters RMSE MAE Run Times (s) Practical recommendation
(PSO, 3 GHz CPU)

1-DM 5 0.0304 0.0236 3.92 Fast/low-cost but
limited accuracy — not
recommended for LCPV
high-fidelity studies

2-DM 7 0.0302 0.0234 4.18 Good compromise:
moderate cost, good
accuracy

3-DM 9 0.02757 0.0228 5.15 Higher fidelity,
moderate–high cost

4-DM 11 0.02836 0.0224 6.14 Best accuracy in this study —
higher computational cost

3.3. Comparative evaluation of the four models

To validate the effectiveness of the four models, we will conduct a comparative study between the
electrical performances predicted by the four models with their optimized parameters and the experimental
data measured under real operating conditions. Considering this, we use the following adjustment equations
to derive the models’ optimized parameters for any other operating condition of temperature T and
irradiation G:

Iph,est = C
(

Iph,re f + Ki.
(
T − Tre f

))
, (21)

nλ,est = nλ,re f

(
T

Tre f

)
, λ = 1, 2, 3, 4, (22)

Isλ,est = Isλ,re f

(
T

Tre f

)3

exp
[

qEg

nλk

(
1
T
− 1

Tre f

)]
, λ = 1, 2, 3, 4, (23)

Rs,est = Rs,re f −
[

n
Isc,est

exp
(
−Voc,est

n

)]
, (24)

Rsh,est = Rsh,re f

(
Gre f

G

)
, (25)

Iph,est, nλ,est, Isλ,est, Rs,est and Rsh,est are the optimized models’ parameters for a given operating
temperature T and irradiation G The subscript λ denotes the diode’s number in the model. Eg is the
bandgap energy of the semiconductor material used in the construction of the PV cells. It varies with
temperature as given by Varshni formula,[8, 36]:

Eg (T) = Eg (0) +
αT2

T + β
, (26)

Eg (0) = 1.1557, α = 7.02110−4 and β = 1108 are specific empirical constants. Voc,est and Isc,est are the
open-circuit voltage and short-circuit current estimated under operating conditions of temperature T and
irradiation G:

Isc,est = Isc,re f
G

Gre f

(
1 + Ki(T − Tre f )

)
, (27)
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Voc,est = Voc,re f + Ns.n1
kbT

q
ln

(
G

Gre f

)
+ Kv(T − Tre f ). (28)

By setting T = Tmeas = 27.2◦C and G = Gmeas = 755W/m2, we can deduce from the transformation
Equations (21)-(25) the optimized intrinsic parameters of each model. Afterwards, we implement equations
eq. (3), eq. (6), eq. (9) and eq. (11) in Simulink while assigning to the intrinsic parameters of each model
their optimized values. A variable resistive load is connected to the equivalent circuits output terminals,
making it possible to vary the current produced from 0 (open-circuit) to the short-circuit value. The
temperature and irradiation are considered as inputs and are set to 27.2◦C and 755W/m2, respectively. For
each operating point selected through the load value, we record the current, voltage and power supplied by
the four models.

Figures 4a to 4c illustrates the estimated I-V and P-V curves along with the experimental characteristics,
showing how well the four models reproduce the PV module experimental performance under the specified
test conditions. The analysis of the obtained performances will focus on the accuracy in predicting three
key performance metrics: the short-circuit current Isc, the open-circuit voltage Voc and the maximum power
Pm .

(a) (b)

(c)
Figure 4. I-V curves obtained with experimental tests and the prediction models implemented with
the PSO optimized parameters (b) zoom in of (a) (c) P-V curves obtained with experimental tests and
prediction models.
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The effectiveness of the Particle Swarm Optimization (PSO) algorithm in parameters estimation is
evident across the four models, as demonstrated by the comparison of predicted results to experimental
data reported in Table 5. Indeed, all models provide similar predictions of Isc , with the 4-DM showing the
smallest deviation (5.1597 A) from the experimental value of 5.0530 A. This suggests that the conventional
PSO algorithm has favorably succeeded in minimizing errors related to the estimation of resistive and
photogenerated current parameters. On the other hand, the 4-DM predicts an open-circuit voltage Voc =
19.6629V, remaining the closest to the experimental value of 20.4236 V. Despite these promising results,
there were still noticeable discrepancies in the estimation of Voc. This difference could be attributed to
the limitations of the translation method used for parameters adjustment. Indeed, the translation method,
although useful for simplifying the extraction process, is based on linear approximations, which may not
fully account for the non-linear characteristics of photovoltaic systems. As for the maximum power, in all
cases, the relative error in its estimate value εpm remains under 2%. Moreover, the predicted maximum
output power by the 4-DM closely matches the experimental value, providing the lowest error of 0.45%
and highlighting the superiority of this model. According to this initial validation, the 4-DM model is
considered the most complete and accurate model, and therefore, used as the benchmark for the comparative
analysis under LCPV.

Table 5. Key performance metrics (Im, Vm, Pm and η) of the PV module “ISOFOTON 106 W-12 V”
obtained with the four prediction models and experimental measurement under T = 27.2 ◦C and G =
755 W m−2.

Procedure Im (A) Vm (V) Pm (W) η (%)

1-DM 5.1645 19.6312 70.5845 1.98
2-DM 5.1645 19.6323 71.4784 0.75
3-DM 5.1645 19.6316 71.4701 0.75
4-DM 5.1597 19.6629 72.3434 0.45
Experimental measurement 5.0530 20.4236 72.0159 –

4. Evaluation of the models under low-concentration PV conditions

The purpose of this evaluation is to assess the accuracy and reliability of each model in simulating the
performance of the “ISOFOTON 106 W-12 V” photovoltaic module operating under concentrated light.
Specifically, we focus on low-concentration photovoltaic (LCPV) conditions. Indeed, low concentration
consists in increasing to a certain amount the number of sun rays captured by the PV cells, with the aim of
improving the PV module efficiency. One possible solution to provide a low-concentration level of the
sunlight is to use a parabolic through concentrator (PLPTC) as described in the subsequent section.

4.1. Brief description of a parabolic concentrator for PV systems

Figure 5 hereafter provides a simplified representation of the PLPTC. It consists of mirror elements
mounted on a parabolic structure, together constituting a parabolic reflector. The latter focuses on the
incident sunlight onto the PV module surface causing an amplification of the received light by the PV cells.
The parabolic reflector may also be mounted on a tracking mechanism (not shown in Fig 5), enabling the
system to operate with an optimal sun alignment. Authors showed in [8] that the PLPTC is capable of
providing a substantial boosting of the solar irradiation reaching the PV cells, enabling them to operate
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with a higher efficiency. Considering the geometrical form of the PLPTC, its focal length F, rim angle ϕrim
and the acceptance angle θc are determined as follows:

F =
W2

16D
, (29)

cos (ϕrim) =

 2F√
(0.5W)2 + (D − F)2

− 1, (30)

sin (θc) =
Rmin (1 + cos (ϕrim))

2F
, (31)

W and D are the width and depth of the parabolic reflector, respectively. Rmin is the half width of the PV
module. Considering this, the aperture effective area (AE) and concentration level (C) are determined as
follows, [21]:

AE = W − 2Rmin cos (ϕrim − θc) L, (32)

Cr = 180
(

sin (ϕrim)− sin (θc) cos (ϕrim − θc)

π (ϕrim + 90 − θc) sin (θc)

)
, (33)

L is the length of the parabolic reflector. A detailed explanation of the theoretical concept on which the
concentrator’s operation principle is based could be found in reference, [21].

Figure 5. Simplified representation of a parabolic concentrator for PV systems adopted from [21] with
some modifications.

4.2. Performance evaluation under different low- concentration conditions

The four models are now simulated with their optimized parameters under different low-concentration
conditions. In this section, the concentration factor C is defined as the ratio between the irradiation received
by the PV cell (G) and the reference irradiation Gre f at STC:

C =
G

Gre f
. (34)

In order to avoid further complicating this study without missing the originality of the analysis, it will
be assumed that the PV module is equipped with a cooling system so that its operating temperature is
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maintained constant at 35 ◦C regardless of the concentration levels, [37, 38]. This assumption is introduced
in order to dissociate the effect of irradiance from thermal effects and to make a consistent comparison of the
models studied under similar temperature conditions. The objective of this study is to evaluate the sensitivity
of the single-diode and multi-diode models studied to variations in irradiance, without incorporating coupled
temperature fluctuations that could mask differences in model performance. However, this assumption
does not reflect the actual operating conditions of concentrated photovoltaic (CPV) systems. In practical
applications, if cell cooling is not ideal, an increase in irradiance concentration generally leads to a
significant increase in temperature. This increase typically results in a drop in open-circuit voltage (Voc), a
decrease in conversion efficiency, and potential discrepancies in model accuracy, particularly for models
involving temperature-dependent parameters.

Figures 6a to 6d illustrate the I-V and P-V curves estimated using the four models under different
concentration levels ranging from 1 sun (C = 1) to 3 suns (C = 3). The obtained plots highlight the
impact of increasing irradiance on the output current and power, as well as the discrepancies between the
different diode models, particularly near the maximum power point (MPP). Additionally, by inspecting
the plots in Figures 7a and 7b, showing the maximum power estimated by the four models under different
concentration ratios, we can observe that the gap between the 1-DM and 4-DM becomes more important
with the increase of C. The difference is about 3 W under 1 sun rising to approximately 30 W when C
is set to 3 suns. As for the 2-DM and 3-DM, the gap with respect to the 4-DM remains always around 2
W over the entire C operating range. In our opinion, the important gap observed in the estimation results
provided by the 1-DM is due to the lack of precision in estimating the recombination losses in the PN
junction, modeled by the diode D1. Consequently, the value of Rs is adjusted by the optimization algorithm
to compensate for the inaccurate estimation of losses due to the recombination current. This will inherently
lead to an over-estimation of the series resistance Rs, resulting in an over-prediction of the ohmic losses
near the region of MPP.

This behavior demonstrates that the PSO algorithm compensates for the structural constraints of 1-DM
by artificially increasing Rs, as the model does not allow for the physical separation of restructuring and
resistant losses. This reveals a fundamental weakness of classical models: while optimization can reduce
adjustment errors, it cannot substitute for missing physical mechanisms, leading to parameter distortion
rather than a true representation of the loss phenomenon. Further quantitative analysis of the diode-based
models is carried out on the basis of two additional performance indicators:

The fill factor (FF) indicates the quality of the solar PV module. It is defined as the ratio between
the maximum power supplied by the module (Pm) and the product of the short-circuit current by the
open-circuit output voltage.

FF =
Pm

Isc · Voc
. (35)

The PV module efficiency (η) defined as the ratio of the maximum output power to the input power:

η =
Pm

CPin
=

Isc · Voc · FF
CPin

, (36)

Pin is the incident power under 1 sun and depends on the module surface (S):

Pin = S Gre f . (37)
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(a) (b)

(c) (d)
Figure 6. (a) I-V and (b) P-V curves obtained with four models under different concentration ratios and an
operating temperature of 35 ◦C, (c) zoom in of “a” near the open-circuit voltage for C equal to 2 suns, and
(d) zoom in of “b” near the maximum power region for C equal to 2 suns.

(a) (b)
Figure 7. (a) Variation of the maximum power estimated by the four model for different values of C and
an operating temperature of 35 ◦C, (b) zoom in of “a”.

Figure 8 illustrates the variation of the Fill Factor versus the concentration ratio obtained with the four
models. The results highlight a consistent improvement in the FF as the number of diodes increases, with
the four-diode model demonstrating the highest values across all concentration levels. The largest gap with
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respect to the 4-DM is obtained with the 1-DM. The difference is about 0.02 under 1 sun and gradually
increases with C to reach 0.04 under 3 suns. Moreover, as opposed to the remaining 3 models, the FF
estimated by the 1-DM starts to decrease when C reaches 15 suns. On the other hand, 2-DM and 3-DM
provide approximately the same performance, while maintaining a constant gap not exceeding 0.01 over
the whole operating range of C.

Figure 8. Fill factor of the diode models versus the concentration ratio.

Figure 9 depicts the variation of the efficiency as a function of the concentration ratio C. All models
show a positive correlation of the efficiency with the concentration, while the 4-DM provides the best ratio
of 14.5% at 3 suns. Similar to the FF trends; the 2-DM and 3-DM provide almost the same efficiency
regardless of the concentration ratio. The gap with respect to the 4-DM is practically constant and remains
in the region of 0.1%. As for the 1-DM, the gap with respect to the 4-DM is more important. Moreover, it
increases with the concentration starting with an error of 0.35% at 1 sun to reach 0.74% at 3 suns.

Figure 9. Efficiency trends of the diode models versus the concentration ratio.

In view of the above analysis of the obtained performance indicators, we can confirm that the 2-DM,
3-DM and 4-DM provide stable performances and show the same trends as a function of concentration
ratio C. The 2-DM and 3-DM provide approximately similar performance with a low error compared to the
4-DM. The 1-DM provides large errors in all cases with a gradual increase versus the concentration ratio.
This is mainly due to the 1-DM’ error in predicting the maximum power, which stems from an inadequate
balance between different losses mechanisms (recombination losses vs. ohmic losses).
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5. Conclusions

This paper investigated the performance of four diode-based PV models using parameters optimized
with the conventional Particle Swarm Optimization (PSO) algorithm. Although PSO is widely applied for
parameter extraction in PV modeling, this study demonstrates its strong capability in handling complex
models such as the 3-DM and 4-DM, which require the estimation of 9 and 11 parameters, respectively.
The study also highlights the importance of properly defining the search range of the fourth diode ideality
factor to ensure reliable convergence of PSO for the 4-DM.

The accuracy of each model was validated against experimental measurements acquired under real
operating conditions. Computational analysis showed that higher-order models increase runtime but also
improve accuracy. As a result, the 1-DM model is suitable for quick, low-fidelity estimates, the 2-DM and
3-DM models offer a balanced compromise between accuracy and complexity for real-time use, and the
4-DM model is best suited for offline design and high-precision simulation. These results illustrate the
behavior of the model under low-concentration radiation and provide practical guidance for selecting the
most appropriate photovoltaic model in research and engineering applications.

Although the low-concentration evaluation was performed at a fixed temperature to isolate the effects of
irradiance, in actual CPV systems, cell temperature is expected to increase with concentration if they are
not actively cooled. This temperature increase could reduce open-circuit voltage and conversion efficiency,
and influence the accuracy of the model, especially for temperature-sensitive parameters. Future studies
should therefore consider the combined effects of irradiance and temperature to assess the robustness of the
model under realistic thermal conditions.
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