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Abstract: The detection of fruit condition is essential to ensure quality control in industrial processes.
Currently, this task is often performed manually, which is inefficient and time-consuming for operators.
Therefore, it is crucial to implement emerging technologies that reduce human effort, costs, and production
time while enabling more effective defect detection in fruits. In this context, this work presents the
implementation of an artificial intelligence model based on computer vision to identify the condition of
fruits. Various models were compared, including YOLOv8, YOLOv11, Detectron2, and Fast R-CNN,
trained on a dataset that classifies fruits into two categories: ripe and rotten. The models were evaluated in
terms of accuracy, speed, and robustness under different lighting and background conditions to select the
most suitable for real-time applications. The results showed that YOLOv8 achieved the best generalization,
reaching a mAP@50 of 83.8% and an accuracy of 77.3%.
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1. Introduction

Agriculture is a key sector for global economic development, providing essential products for food and
health, as well as vital inputs for industrial goods production. However, this sector faces the challenge
of overcoming traditional methods of production and commercialization. The lack of innovation and
modernization in processes has led to stagnation in productivity efficiency and a decline in the quality of
agricultural inputs, directly impacting the sector’s competitiveness and the participation of new generations
in its development [1, 2].

In this context, investment in science, technology, and innovation is crucial to transform agricultural
processes into viable solutions for the industry. These strategies aim not only to improve the competitiveness
of the sector but also to ensure that advancements align with the sustainability and quality demands of
global markets [3–6].
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Food waste is a global challenge that requires innovative solutions, with artificial intelligence (AI)
emerging as a promising tool. In fruits and vegetables, ripening involves evident physical changes, such as
variations in color, texture, and size, as well as less perceptible chemical, biochemical, and microbiological
transformations. Characteristics such as soluble solids, acidity, and sugar content are important but require
destructive laboratory tests, complicating their analysis with AI. Additionally, physiological factors like
respiration and ethylene production, along with microbiological influences from bacteria, viruses, and
fungi, affect the ripening process. These changes, genetically programmed, occur progressively and involve
variables such as tissue softening, pigmentation, and volatile compound production [7]. The incorporation
of AI in this context has the potential to revolutionize quality control and reduce waste, although its full
implementation still depends on technological advancements that enable more accessible and effective
analysis [8].

Fruits, valued for their high nutritional content of proteins and vitamins, can harbor harmful
microorganisms due to inadequate handling and inspection processes, affecting food safety. Many
companies still distribute fruits unfit for consumption, highlighting the need for technological solutions.
Advances in machine learning (ML) and AI have driven automation in agricultural tasks, emphasizing the
importance of computer vision systems for fruit detection and classification. These technologies optimize
industrial processes by overcoming the limitations of manual inspection, such as fatigue and human error,
ensuring more precise and efficient selection in high-demand environments [9].

In the industrial sector, AI-based computer vision has revolutionized tasks such as product classification,
defect detection, and quality control. These technologies provide efficient, fast, and sustainable solutions,
not only improving quality standards but also reducing costs and losses throughout the production chain. In
agroindustry, their application enables the determination of fruit ripeness and detection of spoilage with
high precision, optimizing classification and minimizing waste [10].

Computer vision emulates human visual perception by processing digital images, but with significantly
enhanced capabilities, such as continuous operation and reduced errors. For example, tools like the
Segment Anything Model (SAM), developed by Meta AI, precisely segment objects in images with
minimal resources, strengthening the automation of tasks like fruit classification. Additionally, the use of
high-resolution cameras, such as FLIR and Basler, ensures the capture of high-quality images, essential for
training and operating AI models [11].

Cloud training platforms like Google Cloud AI Platform and Amazon SageMaker enable large-scale
model training with greater efficiency. Google Cloud AI Platform, also known as Vertex AI, offers advanced
tools for training models without the need for coding, while Amazon SageMaker provides an integrated
environment for creating, training, and deploying machine learning models, supporting customization and
the use of pre-trained models [12][13][14][15].

Within this framework, the incorporation of a deep learning model for recognizing ripeness and
spoilage in tropical fruits promises to transform agro-food production processes. This model combines the
capabilities of computer vision with the analytical power of deep neural networks, ensuring high-quality
products and solidifying a competitive and sustainable industrial approach.

2. Related Work

Traditional fruit sorting processes have been carried out manually, with workers visually inspecting
each product to determine its quality, ripeness, or the presence of defects. Although widely used, this
method has significant limitations, such as subjectivity, operator fatigue, and inefficiency when handling
large production volumes [16]. In contrast, automated techniques based on AI and computer vision have
revolutionized these tasks, enabling faster, more accurate, and consistent sorting processes [17].
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These technologies process digital images to identify specific fruit characteristics, such as color,
texture, and size, ensuring high-quality standards and significantly reducing human errors. Transitioning
to automated methods not only increases productivity but also optimizes resources and enhances
competitiveness in the agri-food industry [18].

In recent years, advances in artificial intelligence (AI) in the field of computer vision have transformed
traditional techniques for object classification and detection. Advanced processes such as segmentation
and object detection using neural networks with state-of-the-art architectures, including ResNet [19], SSD
[20], MobileNet [21], SegNet [22], Grounding DINO [23], and various versions of YOLO [24], have
proven essential for tackling complex fruit identification and classification tasks in industrial environments,
optimizing efficiency and accuracy.

Furthermore, the development of transformer-based architectures has represented a significant
breakthrough, improving precision and performance compared to traditional methods. Multimodal
models, such as CLIP [25] and Vision-Language Models (VLM) [26], have opened new possibilities
by integrating multiple data sources. These multimodal technologies allow for deeper and more detailed
data understanding, optimizing detection and classification even in complex scenarios, such as partially
obscured fruits or those with similar characteristics between varieties.

The food industry has recently begun adopting advanced AI models to improve precision in determining
the ripeness and conservation quality of fruits. By leveraging advanced image processing techniques and
deep learning algorithms, these approaches automate classification processes, achieving more accurate and
efficient results. Below, some key studies in this field are analyzed.

Sukkasem et al. (2023) [27] presented research on fruit classification using transfer learning and image
processing, demonstrating how this approach enhances precision compared to other deep learning methods.
In their study, the MobileNetV2 model achieved 99% accuracy, surpassing the original model by 3% and
architectures like AlexNet and VGG16 by 10%. This research highlights the potential of transfer learning
to further optimize performance without requiring extensive domain-specific data.

Similarly, Gulzar et al. (2023) [28] demonstrated in their Sustainability publication that MobileNetV2,
utilizing transfer learning, achieved a 99% success rate in fruit image classification, significantly
outperforming models like VGG16 and ResNet. The study also emphasizes that fine-tuning the classification
layer to match project-specific requirements is crucial for achieving robust results with pretrained networks.

Regarding the detection of fruit ripeness and decay, Wang (2020) and Zhao (2021) [29] highlighted the
effectiveness of models such as YOLO and Faster R-CNN due to their high precision in fruit identification.
However, these models face challenges with partially obscured or very small fruits. Neural networks like
ResNet and AlexNet improve precision in automated agricultural applications and are crucial for real-time
detection, especially when integrated into autonomous harvesting robots.

A noteworthy study in this area was conducted by Garcés et al. (2023) [30], who proposed a portable
system for detecting and classifying apples during harvest using convolutional neural networks. This
system integrates two main methods: apple type detection for counting using the SSD-MobileNet model,
and pixel-level quality segmentation implemented with an FCN-ResNet18 network. This approach stands
out for its adaptability to hardware with limited capabilities, facilitating real-world implementation in
harvesting processes.

In automated phenotypic analysis [31], researchers have demonstrated the effective use of AI
technologies to enhance efficiency and precision in the phenotypic analysis of melons. This study
utilized a combination of deep learning models, including DANet for semantic segmentation, RTMDet
for object detection, RTMPose for keypoint detection, and MobileSAM (Segment Anything Model) for
mobile-friendly segmentation. The results showed a high correlation between algorithm-predicted values
and manually measured values, validating the proposed approach’s feasibility and precision.
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Implementing an efficient AI model for the rapid and accurate detection of spoiled fruits is essential
to optimize this process and leverage the potential of emerging technologies. Neural networks have
demonstrated superiority in image processing and fruit decay detection. However, selecting the
ideal architecture depends on various factors, including the specific task, dataset characteristics, and
available computational resources. Each architecture offers particular advantages in specialized scenarios,
emphasizing the importance of selecting the appropriate model to maximize performance.

3. Methods and Materials

3.1. Dataset

The dataset used in this study consists of 3133 images of tropical fruits, including oranges, guavas,
apples, mangoes, and lemons, with a resolution of 640x640 pixels. These images were classified into two
main categories: ripe fruits and spoiled fruits. The dataset distribution included 700 images of oranges, 600
of guavas, 600 of apples, 600 of mangoes, and 633 of lemons, ensuring a wide range of visual characteristics
for training and evaluating the models. The images were sourced from Kaggle databases, encompassing
various lighting conditions and environments.

To enhance the model’s generalization ability and reduce the risk of overfitting, a systematic data
augmentation process was implemented using the Roboflow platform. This process included a set of
controlled transformations, such as:

• Rotation of ±15°, to simulate common angular variations during image capture.
• Horizontal and vertical translation up to 10% of the image size, enabling the model to adapt to objects

appearing in different positions within the frame.
• Brightness and contrast adjustment within a ±20% range, improving the model’s robustness under

variable lighting conditions.
• Shear transformations up to ±10°, to account for typical distortions found in real-world environments.

These transformations were applied randomly but in a balanced manner, generating multiple augmented
versions of each original image. As a result, the dataset was significantly expanded, not only in size but
also in contextual and visual diversity. This enrichment of the training data enabled the model to learn more
generalized patterns, ultimately improving its performance in real-world scenarios with varying conditions.

3.2. Architecture

For this study, four advanced convolutional neural network architectures specialized in object detection
were selected: YOLOv8, YOLOv11, Detectron2, and Fast R-CNN. Each of these architectures offers
specific advantages in terms of speed, accuracy, and the ability to detect objects of varying sizes, making
them standout options for fruit classification and segmentation tasks.

3.2.1. YOLOv8

YOLOv8 (You Only Look Once version 8) is a state-of-the-art object detection architecture developed
by Ultralytics, widely recognized for its high speed and accuracy in real-time computer vision tasks.
Unlike its predecessors, YOLOv8 features a completely redesigned architecture with enhancements to the
backbone, neck, and detection head, enabling superior overall performance. The YOLOv8 architecture is
primarily composed of three stages:

The YOLOv8 architecture is primarily composed of three stages:
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• Backbone: Responsible for extracting hierarchical features from the input image. YOLOv8 uses a
more efficient design than earlier versions, incorporating C2f blocks (an improved variant of C3),
which enhance feature reuse without significantly increasing computational complexity.

• Neck: Utilizes a PAN (Path Aggregation Network) structure to merge multiscale features, improving
the model’s ability to detect objects of various sizes. This stage enhances spatial context understanding
and refines intermediate representations.

• Head: The output layer generates the final predictions, including bounding box coordinates, class
labels, and confidence scores. YOLOv8 features a lighter and more accurate detection head that
supports detection, segmentation, and classification tasks.

YOLOv8 comes in multiple size variants (n, s, m, l, x), allowing users to scale the model according to
available computational resources. This makes it particularly suitable for edge computing applications,
drones, smart cameras, mobile devices, and embedded systems.

In addition, YOLOv8 introduces a more intuitive training pipeline, improved annotation management,
and direct compatibility with formats such as COCO and YOLO, facilitating seamless integration into
various computer vision workflows. Thanks to these features, YOLOv8 is currently one of the most efficient
and versatile solutions for real-time object detection tasks.

Figure 1. YOLOV8 model architecture [32].
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3.2.2. YOLOv11

YOLOv11 is an advanced evolution in the YOLO (You Only Look Once) family, designed to push the
boundaries of real-time object detection, especially in scenarios requiring high precision. It significantly
improves upon previous versions by incorporating enhanced attention mechanisms, multi-scale feature
fusion, and better contextual reasoning. These advancements enable YOLOv11 to deliver superior
performance in detecting small objects and maintaining accuracy in environments with challenging lighting
conditions and complex or cluttered backgrounds.

The architecture of YOLOv11 is composed of three main stages:

• Backbone: This stage is responsible for initial feature extraction from input images. YOLOv11 utilizes
a hybrid backbone based on CSPNet and Transformer-based modules, allowing it to capture both local
and global features. The backbone consists of approximately 40–60 layers, depending on the model
variant (e.g., YOLOv11-s, -m, -l, or -x).

• Neck: The neck includes enhanced feature aggregation structures such as PANet++ and BiFPN
(Bidirectional Feature Pyramid Network), which improve multi-scale feature representation. This is
crucial for detecting objects of varying sizes particularly small and occluded targets without sacrificing
speed.

• Head: YOLOv11 features a decoupled head for classification and localization tasks. This separation
allows for more precise bounding box regression and class confidence estimation. It also incorporates
adaptive anchor-free mechanisms to better localize small and irregularly shaped objects.

Key characteristics of YOLOv11 include:

1. Advanced small object detection using refined spatial pyramid pooling and attention modules.
2. High robustness under suboptimal lighting and noisy backgrounds.
3. Optimized performance trade-off, maintaining real-time capability with only a slight reduction in

speed compared to YOLOv8.
4. Flexible deployment with different model sizes adapted for resource-constrained environments or

high-end GPU setups.

Figure 2. YOLOV11 model architecture [33].

3.2.3. Detectron2

Developed by Facebook AI Research (FAIR), Detectron2 is one of the most powerful and flexible
open-source frameworks for computer vision tasks such as object detection, instance segmentation, semantic
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segmentation, and keypoint detection. Built on PyTorch, Detectron2 is a complete redesign of the original
Detectron, offering a more efficient, modular, and scalable architecture.

Detectron2 uses deep convolutional neural networks (CNNs) as backbones typically ResNet-50,
ResNet-101, or ResNeXt-101 with configurations that can include over 100 convolutional layers depending
on the model. Its architecture is structured into three main stages:

• Backbone: This stage is responsible for extracting rich visual features from input images using residual
networks (e.g., ResNet), which allow training of very deep architectures due to their skip connections.
Backbones often contain between 50 and 101+ layers.

• Neck / Feature Pyramid Network (FPN): The FPN enhances feature extraction across multiple scales,
making it highly effective at detecting both large and small objects. It improves the semantic richness
of features at all levels of the hierarchy, which is critical for accurate segmentation.

• Head: This stage includes task-specific heads that process the features to generate predictions:

1. Region Proposal Network (RPN) for generating candidate object regions.
2. Box Head for object classification and bounding box regression.
3. Mask Head for instance segmentation, as in Mask R-CNN.
4. Keypoint Head for human pose estimation and keypoint detection.

Key Features:

1. High segmentation precision, thanks to the use of architectures like Mask R-CNN.
2. Multi-task support, allowing simultaneous object detection, segmentation, and keypoint estimation.
3. Highly modular and customizable, ideal for research and complex production systems.
4. Supports multi-GPU training and near real-time inference, although it is generally slower than lighter

models like YOLOv8.
5. Best suited for controlled environments where segmentation accuracy is more important than inference

speed, such as quality control in agriculture, medical image analysis, or industrial inspection.

Despite being more computationally intensive, Detectron2 offers exceptional performance in detailed
object understanding. Its capability to generate pixel-level masks and perform multi-object tracking with
high precision makes it an excellent choice for tasks where spatial accuracy and flexibility are paramount.

Figure 3. DETECTRON2 model architecture [34].
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3.2.4. Fast R-CNN

Fast R-CNN is an advanced object detection architecture developed by Ross Girshick, known for
significantly improving detection accuracy over earlier approaches like R-CNN and SPPnet. Although
slower than newer models such as YOLO, Fast R-CNN excels at detecting objects of various sizes with
high precision, making it especially suitable for scenarios where detection quality is more important than
real-time processing such as high-resolution fruit classification or detailed scientific analysis.

The architecture of Fast R-CNN consists of three main stages:

• Feature Extraction: A deep convolutional neural network (e.g., VGG16 or ResNet50) is used as a
backbone, comprising 16 to over 100 layers, depending on the chosen model. It processes the input
image to produce a detailed feature map.

• Region of Interest (RoI) Pooling: Instead of cropping and resizing image regions individually
like in R-CNN, Fast R-CNN applies RoI pooling directly to the shared feature map, transforming
variable-sized regions into fixed-size representations. This increases both speed and accuracy.

• Classification and Bounding Box Regression: Each RoI is passed through fully connected layers for
object classification and bounding box refinement, allowing precise localization and label assignment.

Key Features:

1. More efficient than R-CNN and SPPnet, allowing end-to-end training with shared computations.
2. High detection accuracy, even in high-resolution or visually complex images.
3. Reduced memory and computational redundancy, due to single-pass feature extraction.
4. Best suited for applications where detection accuracy outweighs speed, such as quality control,

scientific classification, and detailed visual documentation.

Figure 4. FAST R-CNN model architecture [35].

3.3. Experiment setup

In this study, the YOLOv8, YOLOv11, Detectron2 and Fast R-CNN models were selected due to their
outstanding performance in object detection tasks. These models have proven to be key in similar studies,
excelling in detecting objects of different sizes and shapes, making them ideal for addressing the specific
challenges of this work.

The dataset used was divided into three parts: 85.56% intended for training, 10.85% for validation and
5.58% reserved for testing. The training was carried out using specific configurations designed to optimize
the performance of each model and ensure reliable results in the detection process, as can be seen below.
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Table 1. Training Configurations for AI Models

Configuration YOLOv8 YOLOv11 Detectron2 Fast R-CNN

Optimizer Adam Adam Adam SGD
Learning Rate 0.001 0.001 0.0025 0.01
Batch Size 16 16 128 16
Number of Iterations 200 200 10000 200
Hardware Nvidia Tesla T4 Nvidia Tesla T4 Nvidia Tesla T4 Nvidia Tesla T4
Additional Configuration Patience = 15 Patience = 15 Patience = 15 Patience = 15

Table 1 details the configurations used for training each of the models. These settings were carefully
selected to optimize the performance of each model according to their specific characteristics. The Adam
optimizer was chosen for YOLOv8, YOLOv11, and Detectron2 due to its ability to adapt quickly and
converge efficiently, while Fast R-CNN uses SGD, which typically performs better in traditional networks
and allows more direct control over the learning rate.

The learning rate values were adjusted to balance convergence speed and training stability, being slightly
higher for Detectron2 because of its more complex architecture. Batch size was determined based on
computational capacity and the need for statistical stability; notably, Detectron2 employed a considerably
larger batch size to improve gradient estimation.

The number of iterations reflects the complexity and time required for each model to reach optimal
performance, with Detectron2 needing significantly more iterations due to its greater depth and detailed
segmentation tasks. The use of Nvidia Tesla T4 hardware provides the necessary acceleration to efficiently
train all models under these configurations.

Finally, the Patience parameter was set to 15 to enable early stopping of training if no improvement is
observed, thereby preventing overfitting and optimizing resource use. The following figure shows a block
diagram of the proposed system.

Figure 5. Block diagram of the proposed system.

4. Results and discussion

For this research, the supervised unimodal models YOLOv8, YOLOv11, Detectron2, and Fast R-CNN
were used. These models were pre-trained using the Google Colab tool with a 15 GB NVIDIA Tesla T4
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GPU. The images used presented a variety of environmental and lighting conditions, adding a level of
realism and complexity to the detection task. For the implementation, we used the TensorFlow framework,
the Python programming language, and the NumPy and Pandas libraries. After running the proposed model
with different architectures, the following results were obtained:

Table 2. Comparison of Object Detection Models.

Model Architecture Precision Recall mAP50 mAP50-95

YOLOv8 CSPDarknet53 77.3 74.7 83.8 60.0
YOLOv11 CSPDarknet53x 73.1 73.7 81.9 58.7
Detectron2 ResNet-50-FPN 80.1 64.9 78.8 55.0
Fast R-CNN ViT 63.9 81.8 76.9 52.8

Table 3. Comparison of AI Model Predictions.

Image YOLOv8 YOLOv11 Detectron2 Fast R-CNN

In Table 2 and 3 The evaluation of object detection models YOLOv8, YOLOv11, Detectron2, and
Fast R-CNN revealed notable differences in their performance across key metrics, such as precision,
recall, mAP@50, and mAP@50-95. These results highlight the strengths and limitations of each model
in the context of fruit classification tasks, offering insights into their suitability for real-world industrial
applications.

Detectron2 achieved the highest precision (80.125%), indicating its superior ability to minimize false
positives. This attribute is critical for ensuring high-confidence detections, especially in applications where
misclassification of defective fruits could compromise quality control. However, its recall (64.9%) was
significantly lower than other models, suggesting it missed a substantial number of actual detections, which
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limits its overall robustness in identifying all target objects. Conversely, Fast R-CNN demonstrated the
highest recall (81.85%), outperforming all other models in capturing most of the target objects. However,
this came at the cost of lower precision (63.97%), which could lead to an increased rate of false positives, a
drawback in scenarios demanding high accuracy.

YOLOv8 demonstrated a strong balance between precision (77.3%) and recall (74.7%), achieving the
highest mAP@50 (83.8%). This indicates its excellent generalization ability and accuracy across various
conditions, making it the most suitable model for detecting fruit defects in real-time industrial applications.
Furthermore, its mAP@50-95 score (60.097) surpassed those of YOLOv11, Detectron2, and Fast R-CNN,
emphasizing its robustness in detecting objects of varying sizes and complexities.

YOLOv11, while slightly lagging behind YOLOv8 in precision and recall, still performed competitively
with an mAP@50 of 81.9 and an mAP@50-95 of 58.7. This positions YOLOv11 as a viable alternative for
scenarios where computational constraints are less stringent, as its architecture (CSPDarknet53x) offers
improved feature extraction over standard CSPDarknet53.

Detectron2 and Fast R-CNN, despite their strengths in specific metrics, struggled to achieve competitive
mAP scores compared to YOLOv8 and YOLOv11. Detectron2’s ResNet-50-FPN architecture may be less
suited for detecting fine-grained defects in fruits, while Fast R-CNN’s transformer-based ViT architecture
might face challenges with the dataset’s specific characteristics, such as variable lighting and background
conditions.

The superior performance of YOLOv8 in terms of both precision and mAP metrics makes it the optimal
choice for deployment in real-time industrial systems. Its ability to maintain a strong balance between
precision and recall ensures both reliability and efficiency in defect detection, reducing manual inspection
efforts and minimizing post-harvest losses. While Detectron2 and Fast R-CNN could be valuable for
specific tasks emphasizing precision or recall individually, their overall lower mAP scores limit their
practical applicability in high-throughput environments.

The study also underscores the importance of selecting model architectures tailored to the specific
requirements of the application. While YOLOv8’s CSPDarknet53 demonstrated robustness and adaptability,
alternative architectures like Detectron2’s ResNet-50-FPN may require additional optimization or
specialized preprocessing to achieve comparable results in agricultural settings.

Future research should focus on integrating advanced preprocessing techniques and domain-specific
augmentation strategies to enhance the performance of models like Detectron2 and Fast R-CNN.
Additionally, evaluating these models on larger and more diverse datasets could provide deeper insights into
their scalability and generalization capabilities. Furthermore, exploring pretrained multimodal models and
architectures leveraging transfer learning strategies would be crucial to optimizing model generalization.

5. Conclusions

In conclusion, the advanced convolutional neural network models evaluated in this study, such as
YOLOv8, YOLOv11, Detectron2, and Fast R-CNN, demonstrated remarkable performance in fruit detection
tasks, each with its own strengths and limitations. The results highlight the importance of choosing the
appropriate architecture based on the system’s specific needs, such as accuracy, real-time detection
capability, or detailed object segmentation. In particular, YOLOv8 excelled with its balance between
precision and speed, making it the most suitable option for real-time industrial applications, where efficiency
is required without sacrificing accuracy.

However, models like Detectron2 and Fast R-CNN also offered advantages in scenarios where precise
segmentation or detection of complex objects is critical. Although these models showed promising results,
their performance in terms of mAP and precision did not match that of YOLOv8 in high-performance
industrial settings. The study suggests that future research could focus on optimizing these models using
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advanced preprocessing techniques and domain-specific data augmentation, which could improve their
generalization ability and applicability in more diverse environments.
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