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Abstract: The electric power system’s seasonality would mitigate the problem of the energy volatility crisis.
Seasonal identification is important in energy usage analysis to make a better an organization’s energy
performance. Identification of the seasonal component in a time series data is essential since it defines a
fluctuation within an interval of time. This seasonal component can be identified as a periodic phenomenon.
Signal processing models can be used in analyzing periodic data in the representation of sinusoidal function.
Seasonal variations are an important factor influencing the behavior of an electric power and energy load.
This paper introduces the application of deterministic functions in the Ornstein—Uhlenbeck process as
a sinusoidal signal processing model in identifying seasonal components represented in periodic terms.
We conducted extensive experiments to validate the model on three datasets in electric power and energy
systems namely electricity load, household electric power consumption, and power consumption of the
three source stations. Further, it can be obtained that the periodic continuous-time-inhomogeneous signal
of Ornstein—Uhlenbeck model can be used to identify the seasonal term of the very short to medium horizon
forecast of the electric power and energy system. Seasonal changes in energy consumption can be used
in energy management in the scope of energy efficiency connected to renewable energy plans.

© 2026 by the authors. Published by Universidad Tecnolégica de Bolivar under the terms of the Creative Commons Attribution 4.0
License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation,
and DOI. https://doi.org/10.32397/tesea.vol6.n2.699

1. Introduction

Lowering energy consumption and operating costs begins with a thorough understanding of an
organization’s energy data. Organizing energy with energy management is a framework combining
management and technology to develop a proactive and integrated plan with the intention to better an
organization’s energy performance. Organizing energy by energy management is a key aspect of an
organization’s overall environmental management system. Whereas, energy efficient as a part concept of
energy management. Recent research investigates the energy management and energy efficiency, i.e., [1]
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study the challenge of the optimal design and energy management of a grid connected renewable energy
plant composed of a solar thermal collector, photovoltaic system, ground source heat pump, battery, one
short-term thermal energy storage and one seasonal thermal energy storage.

In energy usage analysis, it is important to look out for seasonal changes in consumption. The identification
of patterns of time series data may include trend, seasonality, cyclicality, and random variability. The difficult
one on the matter of how to identify seasonality is defined as a structure’s pattern of changes over time. It
is very important to identify seasonality variation that exists in the time series data to determine the most
appropriate forecasting model. The existence of the seasonality may obscure trend and cyclical patterns [2].

Time factors include weekly periodicity and seasonal variations influence the behavior of an electric
power and energy system loads [3]. Seasonality variation in time-series data refers to a pattern that occurs
at aregular interval [4], while a periodicity is a pattern in a time series that occurs at regular time intervals
[5]. Seasonality identification is essential because this component is the most important characteristic of time
series. While seasonal variation is well understood, it enables more accurate inferences of the forecast model.

Many studies have been conducted to identify seasonal variation, which can be applied to various fields
of life. Identification of seasonal variation in the diagnosis of acute myeloid leukaemia was provided by
[6], [7] identify the seasonal of identification of PM 10 in an industrialized city. [8] identify the spatial and
seasonal variations of volatile organic compounds (VOCs) using passive air samplers in the metropolitan
city of Seoul, South Korea. Whereas, [9] explores the seasonal rainfall variation in Indonesia under normal
conditions, excluding the influence of El-Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (I0D)
events. Seasonality of reactive power procurement would mitigate the problem of price volatility [10]. [11]
quantify the seasonal variation of the resulting net electricity demand. [12] estimates the seasonal path of
energy systems using the diffusion process model.

A simple way to correct for a seasonal component is to use differencing in which the seasonal component
is modeled directly, then subtract it from the observations. The seasonal component in a given time series
is likely a sine wave over a generally fixed period and amplitude. This can be approximated easily using
a curve-fitting method. Seasonality identification using auto-correlation analysis [2], direct seasonal
adjustment [13, 14], or ARMA [15].

Pramesti ([16]) proposed a time-inhomogeneous Ornstein—Uhlenbeck model with a sinusoidal signal
processing as the deterministic function and provided the theoretical background of the model., i.e., the
consistency and the asymptotic normality of the estimates. Recall the finding of [16], that is, the conditional
mean of the process can be expressed as

Eo[Yilyo] = 255 +11(6),

where

K
W
0)= — A,B,w),
where f;(A,B,w) is an inhomogeneous function of sinusoidal signal processing. Whereas, the mean of
(say) autoregressive-moving-average (ARMA) is

c

E - =
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(see [3] for reference). Considering the properties of mean-reversion, where the movement of the variable
follows its average, and the average contains a sinusoidal signal processing component, then, this component
can be taken into account to capture the periodicity pattern of the variable. Moreover, in the results of [16],
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the theoretical background of the estimates is satisfied in nh — oo, and nh? — 0. This means, that under
a high-frequency scheme in the periodic sinusoidal signal of Ornstein—Uhlenbeck, that is, in very large
datasets, the model can be considered to overcome the nonlinear components of the paths.

Therefore, this paper continues the result of [16], namely to apply the proposed model in identifying
seasonal components of the time series that are represented in periodicity term. We feel sure that the model
of sinusoidal signal processing of Ornstein—Uhlenbeck [16] would be interesting for future issues in terms
of identifying seasonal variations. We chose the electric power and energy systems dataset. Based on the
theoretical background of the model provided by [16], we believe the model can be considered in identifying
the seasonal component in the electric power and energy systems time series dataset.

From the background above, we can state the important contributions of the research objectives of the
study, namely:

1. Seasonality is a crucial aspect of time-series analysis. Seasonal term identification provides a better
understanding of data variables and helps forecast better. The periodic continuous-time-inhomogeneous
signal of Ornstein—Uhlenbeck model can be used to identify this term properly, that is, the nature of the
mean-reversion and high-frequency schemes in the Ornstein—Uhlenbeck process, the author believes
the proposed model is more realistic to apply to electric power and energy systems.

2. Understanding the use of the continuous-time-inhomogeneous signal of Ornstein—Uhlenbeck forecast
in identifying seasonal terms in periodic representation in the electric power and energy system

3. The implementation of sinusoidal signal processing in the drift of Ornstein—Uhlenbeck model is very
necessary for capturing periodic and harmonic system patterns. Studies on the frequency components
of the periodic continuous-time-inhomogeneous sinusoidal signal of Ornstein—Uhlenbeck process
have never been carried out. The results of the [16] research are the first findings of the theoretical
background of the frequency components of the periodic continuous-time-inhomogeneous sinusoidal
signal of Ornstein—Uhlenbeck process. The application of this model is very important to introduce
the use of the Ornstein—Uhlenbeck model in identifying seasonal terms in time series data in both short
and medium-term forecasting horizon time.

2. Methods and Materials

The mean-reversion model can describe a wide range of behaviors, particularly in electric power and
energy systems. The Ornstein—Uhlenbeck process is a well-known stochastic process that represents the
characteristic of the process to drift towards the mean. Mean reversion is the term for this phenomenon.
The trend, seasonal dynamics, and possible irregular effects of time series phenomena are represented by
a function of time in the drift in a time-inhomogeneous Ornstein—Uhlenbeck model, see [17] and [18] for
results about the periodic functional tendency. Periodic continuous time as a deterministic function in the
drift of the Ornstein—Uhlenbeck model can be considered to capture the periodicity term in the energy’s paths.

Periodic phenomenal19] can be analyzed using a sinusoidal processing model. A repeating pattern
within any fixed period is known as seasonal variation ([4]), while a periodicity is a pattern in a time series
that occurs at regular time intervals ([5]). Hence, the seasonal variation can be used in analyzing seasonal
phenomena with periodic signals.

Identifying seasonal effects is a critically important aspect of accurately predicting the development of
systems. Based on this background, we provide the application of [16] in identifying a seasonality component.
We believed that the periodic continuous-time sinusoidal signal processing of a time-inhomogeneous
Ornstein—Uhlenbeck model

K
dY;= <—)\Yt-|- Z [Agcos(wgt) +Bksin(wkt)]> dt+odw;, t>0, Yo=yo 2.1
k=1
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(see [16] for reference) can be used in identifying the seasonal variation in very short to medium-term electric
power and energy system forecasting problems.
The periodic sinusoidal signal processing, say

qt(ﬁ):i[Akcos(wkt)—I—Bksin(wkt)], wr=2mks, B=(ABw).
k=1

have been used in analyzing periodic data or phenomena [19]. The involvement of the signal processing in
the drift of the Ornstein—Uhlenbeck model is used to capture the seasonal term in the periodic representation
of the time series data. Since the characteristic of the electric power and energy systems follow to
mean-reversion system, whereas, the Ornstein—Uhlenbeck process is one of the popular model that has these
properties then definitely, the advantages of Ornstein—Uhlenbeck forecast in identifying the seasonality
of signals is provided an appropriate time series forecast model in the electric power and energy systems.
We apply the proposed model [16] by describing the electric power and energy systems. We choose
three electric power and energy system dataset, namely electricity load from Tokyo Electric Power Company
(TEPCO), France household electric power consumption, and power consumption of Tetouan city in
Morocco. We also compare the performance of én of the least-squares estimators (LSE) of [16] with its
least absolute deviation-estimators (LADE), 6,,; just for computationally comparisons. With the same
methodology step in the LSE, we change the objective function of the LSE with the LADE, that is,

n
g, argminz Yt], - (Yt/.f1 —)LhYt/,l +hhj_q (ﬁ)) ‘
0 j=1

In this study, we implement a train-test split to evaluate the model that consists of splitting the dataset
into training and testing sets; namely, we select an arbitrary split point: all records up to the split points
are taken as the training dataset, and all the records from the split point to the end of observations is taken
as the test set. One set was then used to train the model, and the testing dataset was used to evaluate the model
(see, e.g.,in [20] and [21]). All calculations in the empirical results have been performed in the R program.

3. Seasonal electric power and energy systems

We apply the proposed model [16] by describing the electric power and energy systems. We choose
three electric power and energy system dataset, namely electricity load from Tokyo Electric Power Company
(TEPCO), France household electric power consumption, and power consumption of Tetouan city in
Morocco. We also compare the performance of 6, of the least-squares estimators (LSE) of [16] with its
least absolute deviation-estimators (LADE), 6,,; just for computationally comparisons. With the same
methodology step in the LSE, we change the objective function of the LSE with the LADE, that is,

b, cargmin}_" |, — (Yi, , —ARY, , +hhy 1(8)) ‘
0 j=1

In this study, we implement a train-test split to evaluate the model that consists of splitting the dataset
into training and testing sets; namely, we select an arbitrary split point: all records up to the split points
are taken as the training dataset, and all the records from the split point to the end of observations is taken

as the test set. One set was then used to train the model, and the testing dataset was used to evaluate the model
(see, e.g., in [20] and [21]). All calculations in the empirical results have been performed in the R program.
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Figure 1. Hourly System Electricity Time Series (2016-2022).

3.1. Electricity load from TEPCO

A short-term dataset was obtained from TEPCO Holdings’s files [22], and consisted of twenty-four-time
series, one for each hour during a day, of hourly power demand system electricity consumption, with three
decimal points. The twenty-four electricity consumption time series, for the seven years, starting April
1, 2016, and ending June 9, 2022, as a first casual look at the hourly system electricity (Y represents the
electricity load, in kW) time series in Figure 1, which exhibits a clear seasonal component and periodicity
pattern. Figure 1 also shows a trend of mean reversion, that is, when the load is high, its demand tends to
increase, putting downforce on the load. Conversely, when the load is low, the electricity demand tends
to decrease, providing an uplift to the load.

Table 1-4 summarizes the overall results of performance of estimates corresponding to different 7 and
h for 2017, 2018, and 2019 loads; with their RMSE. We took the past electricity demand data in the period
January 17,2017, to July 11, 2017; January 27 to December 8, 2018; February 11 to June 16,2019. From
Table 1 and Table 4, it seems that the models are overfitting. A model is overfitting if there exists a less
complex model with a lower test the Root Mean Squares Error (RMSE) [23]. Overfitting indicates that the
model fits the data very well, but due to the complexity of the pattern of the seasonality for any particular
time series, we should care to predict the new data of the same system. Table 2 for n = 7500 reports the
results that the models are relatively underfitting. A model is underfitting if there exists a more complex
model with lower test RMSE [23]. Further, the models seem underfitting.

It can be seen from Table 2; for electricity load in 2018, n = 7500;4 = 0.1,0.07, and Table 3, that the
performance of the LSE is better than the LADE.

The path of the load and the approach model of the sinusoidal signal processing of Ornstein—Uhlenbeck
model can be visualized as in Figure 2.
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Table 1. The performance of 0,,, for electricity load in 2017, and considered 7 and F; just for comparison.
The RMSE of the train is given with the RMSE of the test in parenthesis

0, h=0.03 n=4000

n=4100 n=4200 h=0.03 h=009 h=03
A 0.005 0.005 0.005 0.002 0.0005
Ay 1.513 1.524 1.529 1.374 1.523
By 1.782 1.787 1.780 1.810 1.674
A, 1.528 1.492 1.499 1.528 1.442
B, 1.754 1.753 1.756 1.801 1.619
) 1.530 1.546 1.526 1.523 1.829

RMSE 528.936

541.560

(1058.368) (1168.052)

527.781  527.764  527.790

(838.256) (838.063) (838.160)

Table 2. The performance of 0, for electricity load in 2018, and considered # and /; just for comparison.
The RMSE of the train is given with the RMSE of the test in parenthesis

0, h=0.07 n="7500
n=7450 n=7550 h=07 h=01 h=007

A 0.0007  0.0007  0.00007  0.0005 0.0007
Ay 1.517 1.516 1.431 1.481 1.538
B 1.798 1.791 1.916 1.873 1.799
A, 1.497 1.506 1.498 1.439 1.497
B, 1.765 1.762 1.734 1.794 1.754
) 1.517 1.531 1.500 1.506 1.522
RMSE 779218 775.608 778.058 777.130  777.139

(451.756) (480.421) (463.496) (462.103) (462.057)

3.2. France household electric power consumption

The time series is composed of a one-minute sampling rate of electric power consumption in a house
located in Sceaux, Paris, France, between December 16, 2006, and ending December 13, 2008. The data
set available at the [24] is made available under the “Creative Commons Attribution 4.0 International (CC
BY 4.0)” license. We considered four data of the energy consumed, namely:

*  GAP represents the active energy consumed (in Wh) in the household by electrical equipment not
measured in SM1 and SM2;

*  GRP represents the reactive energy consumed (in Wh) in the household by electrical equipment not
measured in SM1 and SM2;

*  SMI1 represents energy sub-metering no 1 (in Wh of active energy) corresponds to the kitchen, containing
mainly a dishwasher, an oven, and a microwave;

*  SM2 represents energy sub-metering no 2 (in Wh of active energy) corresponds to the laundry room,
containing a washing machine, a tumble-drier, a refrigerator, and a light.

We analyze the empirical performance of 0, of the GAP and GRP; SM1 and SM2 with a train-test split
0f 90%. The performance of én and the RMSE is reported in Tables 5 and 6. From Table 5, the test RMSE
of GAP is greater than the train RMSE. Whereas, for GRP, the test RMSE decreases as the train RMSE.
The results indicate the model of GAP is overfitting, while the model of GRP is relatively underfitting.
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Table 3. The performance of the 6, for electricity load in 2018, and considered # and k; just for comparisons.
The RMSE of the train is given with the RMSE of the test in parenthesis

0, n="7500
h=01  h=0.07
A 0.001 0.0007
Ay 1.375 1.516
B 1.842 1.791
A, 1.559 1.506
B, 1.840 1.762
5 1.433 1.531

RMSE 781582  781.570
(534.095) (533.819)

Table 4. The performance of 8, for n = 3000 of electricity load in 2019, and considered ; just for
comparison. The RMSE of the train is given with the RMSE of the test in parenthesis

1=23000
0, h=0.05 h=0.065 h=0.071
A 0.005 0.004 0.004
Ay 0.693 0.681 0.699
B 0.960 0.974 0.977
Ay 0.608 0.605 0.596
B, 0.846 0.836 0.838
) 0.575 0.568 0.567

RMSE 610.483(921.875) 610.486(921.974) 610.479(921.990)

As can be seen in Table 6, we can find out the fact that the test RMSE is less than the train RMSE. The
model of SM1 and SM2 tends to be underfitting. The seasonality of the one-minute sampling rate of electric
power consumption in the kitchen (period from December 16, to December 18, 2006) and laundry room
(period from December 16, to December 20, 2006), can be approximated by the model (2.1) with the same
periodic sinusoidal signal that its estimator listed in Table 6. This evidence indicates that the consumption
of electric power in both rooms has the same pattern of periodicity in the given periods. Further, we also
deduce that the performance of the LSE in Table 6 is better than the LADE in Table 7.

3.3. Power consumption of Tetouan city

According to reference [25], the data set that is available at [26] comprises the power consumption data (in
kWh) in Tetouan city, collected every ten minutes from the supervisory control and data acquisition system
of Amendis company which is distributed the energy to the three different source stations located in northern
Morocco, namely Quads, Smir and Boussafou. We considered three data of their power consumption. To
conclude this Section, the performance of the LSE of the power consumption of Quads, Smir, and Boussafou
was analyzed with a train-test split of 90%.

We took the power consumption of Quads in the period January 14, to February 4, 2017; Smir in the
period February 11, to March 11, 2017, and Boussafou in the period January 7, to February 4, 2017. Table 8
summarizes the results of the performance of én and the RMSE. The test RMSE of Quads increases as the train
RMSE; the test RMSE of Smir decreases as the train RMSE;; the test RMSE of Boussafou increases as the
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Figure 2. (Yt], );7:0 (dark grey) versus the model (black) of the electricity load from February 28 to August
13,2017, and January 27, to May 11, 2018, respectively; with K=3; h=0.9. Time in hourly.

Table 5. The performance of 9n with n =900 of GAP and GRP, and considered /; just for comparison.
The RMSE of the train is given with the RMSE of the test in parenthesis

0, GAP GRP
h=07  h=08 h=07  h=08

A 0.002 0.002 0.053 0.067
Ay 0.485 0.487 0.510 0.539
B, 0.528 0.495 1.036 0.979
A, 0.731 0.713 1.027 1.052
B, 0.360 0.464 0.812 3.527
) 0.848 0.761 0.694 0.643

RMSE 500.603 500629  41.609  40.554
(506.358) (506.705) (27.995)  (25.345)

train RMSE decreases. The model of Quads and Boussafou tend to be underfitting. For Quads and Boussafou;
h=0.003, we can see from Table 10 that the performance of the estimates of both is better than the LADE.

4. Conclusions and Future Works

From Subsection 3.1-3.3 we can summarize the following.

1. The salient feature of electricity consumption is seasonality. The hourly electricity load of TEPCO
(Subsection 3.1) shows that the seasonality of the past electricity demand in the period January 27
to December 8, 2018, can be approximated by a periodic sinusoidal signal processing model in the
drift of the model (2.1). Further, the proposed model (2.1) can be used for medium-term forecasting
using hour-by-hour Japan electricity load data.

2. Theresults of electric power in Subsection 3.2 indicate that the seasonality of the one-minute sampling
rate of the reactive energy consumed for December 16 to December 17, 2006, can be approximated
by a periodic sinusoidal signal. Whereas, the seasonality of the one-minute sampling rate of electric
power consumption in the kitchen and laundry room in the periods December 16 to December 20, 2006,
can be approximated by the model (2.1) with the same periodicity. Seasonality identification to manage
building electrification also has mentioned in [27], that is, the study proposed renewable energy and
seasonal energy storage by identifying the building electrification seasonality of the electricity demand.
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Table 6. The performance of 0, for SM1 and SM2, and considered 1 and h; just for comparison. The RMSE
of the train is given with the RMSE of the test in parenthesis

0, SM1, n=2100 SM2, h=0.73
h=073 h=083 n=2100 n=5100 n=6100

A 0.399 0265  —0.001 0.404 0.398
Ay 0.100 0.314 0.185 0.164 0.097
By 0.500 0.193 0.021 0.489 0.499
A, 0.699 0.744 0.570 0.719 0.712
B, 0.100 0.278 0.508 0.117 0.136
5 1.100 1.014 1.000 0.975 0.974

RMSE  6.738 6.742 9546 12220  12.021
(2021)  (2051)  (5.216)  (6.653)  (4.062)

Table 7. The performance of 6,, for SM1 and SM2, and considered 7 and /; just for comparison. The RMSE
of the train is given with the RMSE of the test in parenthesis

g, SM1, n=2100 SM2, h=0.73
h=0.73 h=083 n=2100 n=5100 n=6100

A —0.0003  —0.0003 0.0001 53¢—05 4.6e—05
Ay 0.158 0.250 0.314 0.176 0.175

B 0.587 0.643 0.536 0.617 0.621
A, 0.811 0.754 0.515 0.736 0.740

B, 0.303 0.344 0.370 0.340 0.346

) 0.977 0.834 0.974 0.944 0.932

RMSE  6.083 6.077 9.837 11206  10.993
(0.681)  (0.899)  (5216)  (5538)  (3.015)

The numerical studies confirm that the seasonality of a time-inhomogeneous Ornstein—Uhlenbeck
process led to a good result for very short-term forecasting using minute-by-minute data.

In the given periods, the seasonality of power consumption of Quads and Boussafou (Subsection 3.3)
has similarities. This evidence is supported by the seasonality of ten minutes of power consumption
can be approximated by (2.1) with the same periodic sinusoidal signal processing model. Furthermore,
[25] confirms the similarities because of the hot weather and vacation time. The results also confirm
that the seasonality of a time-inhomogeneous Ornstein—Uhlenbeck process can be used for short-term
forecasting with ten-minute-by-ten-minute data.

Overfitting indicates that model (2.1) fits the data very well, but due to the complexity of the pattern of

the seasonality for any particular time series, we should care to predict the new data of the same system (see
Table 1 and 4 of electricity load in 2017, 2019, respectively; Table 5 of GAP of France energy consumption).
From the numerical experiments, we can deduce the following.

In the computational comparisons, the performance of the LSE is better than the LADE;

The proposed model (2.1) can capture the seasonal variation in very short-term to medium-term horizon
forecasts. The performance of the estimates is very satisfactory for very short-term problems. We
presume this happens because of the sensitivity of the periodic sinusoidal signal processing model in
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Table 8. The performance of 0, and considered n and h; just for comparison. The RMSE of the train is
given with the RMSE of the test in parenthesis

én Quads, n=23000 Smir, n=4000 Boussafou, n =4000
h=0.002 h=0.003 h=0.002 h=0.003 Hh=0.002 h=0.003
A 0.070 0.047 0.013 0.009 0.055 0.036
Al 0.191 0.192 0.186 0.184 0.147 0.184
B’l 0.156 0.160 0.177 0.156 0.162 0.154
Az 0.681 0.708 0.721 0.692 0.702 0.698
Bz 0.412 0.432 0.454 0.441 0.457 0.423
5 0.145 0.095 0.102 0.152 0.110 0.166

RMSE8817.515  8817.581  4492.407 4492372  5144.363  5144.285
(7755.679) (7756.834) (4505.368) (4505.327) (4443.826) (4443.972)

Table 9. The performance of 6, and considered # and h; just for comparison. The RMSE of the train is
given with the RMSE of the test in parenthesis

0, Quads, n=23000 Boussafou, 7 =4000
h=0.002 h=0.003 h=0.002 Hh=0.003

A 0.069 0.046 0.098 0.043

Ay —0.049 —0.146 —1258.468 0.201

B, 0.123 0335  1207.519 0.115

A, 0.727 0.461  1001.718 0.686

B, 0.503 0361 —715.493 0.331

5 0.014 0.226 0.0945 0.156

RMSE8817.870  8817.986  4923.835  5194.563
(7670.738) (7670.666) (5373.743) (5041.249)

approaching the process, therefore, we should take care in applying the model to the new systems in
each term horizon forecast.

A class of models that can capture a time variation is the periodic model, while the features of seasonality
that appear as a periodic pattern are common at least with daily and weekly series (see [3], [28], and [19]). The
behavior of an electric power system load depends on time which is include the term of periodicity and seasonal
variations. In this study, practical experiments confirms that the proposed model (2.1) with the periodic
continuous-time sinusoidal signal can be used to capture the seasonal variation in very short to medium-term
problems. We feel sure that the proposed model (2.1) is appropriate for long-term forecasting (e.g., in-stock
exchange problems). In this view, in addition to the model of [29] for medium and short-term forecasting,
the model [16] as the periodic sinusoidal signal processing of a time-inhomogeneous Ornstein—Uhlenbeck
model can be used to identify a seasonal variation that appears in a periodicity pattern in all-time horizon
forecasts, excluding the long short-term problems in the electric power and energy systems load.

Interestingly, an important point to note regarding the non-periodic sinusoidal signal capturing irregular
(or non-linearity) components that are caused by irregular patterns (see [30—32] in the case of discrete-time
chirp signal), is that we can consider non-periodic time-inhomogeneous Ornstein—Uhlenbeck model as
paving the way to a massive solar energy supply and wind power generation in very short-term forecasting
due to the existence of high non-linearity in the systems (e.g., [33], [34] for references).
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Table 10. The performance of 6, and considered 1 and F; just for comparison. The RMSE of the train
is given with the RMSE of the test in parenthesis

0, h=0.003
Quads  Boussafou

A 0.046 0.043
Ay —0.146 0.201
B 0.335 0.115
A, 0.461 0.686
B, 0.361 0.331
5 0.226 0.156

RMSE 8817.986 5194563
(7670.666) (5041.249)

The sinusoidal processing model has been used in analyzing seasonal phenomena to the electric power
and energy system load. We consider a periodic sinusoidal signal whose is modeled by the harmonic of
the sinusoidal signal processing components. By the periodicity, we can find the stationary solution of the
paths. The stationarity is easily relaxed since we employ that the sinusoidal signal is periodic. However, it
is straightforward to generalize the model set, so it applies to the model where the continuous-time sinusoidal
signal model is non-periodic.

We can set functions

Xi=exp(fi+Y:),

with the deterministic function
fe=v0+71Hi+72P:+73Ss,

and
*  H;=1,if the % relative humidity (r.h) is between 30 —60%, H; =0 otherwise;

*  Py=1, if the temperature is between 159C-249C, P; =0 otherwise;
* §;=1,if the wind speed is between 2—10.5 m/s, S; =0 otherwise.

Also,

dt

where Y; is defined as the electric power and energy systems load,

To be triggered by the risk of a sudden change of jumps in mathematical descriptions, further, we can
expand to the mean-reversion could be a starting point to introduce a time-inhomogeneous signal processing
model in the Lévy-driven Ornstein—Uhlenbeck process

K
dY:= <IX—|— Z,kak(t,w) —/\Yt> dt—l—b(Yt)dwt—i—C(Yt_)d]t,
k=1

where B = (B)X_|,w = (wy)K_,, ] is pure-jump Lévy process, A € R is a constant, K € N is known (see
[35] for reference).
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A special case of interest is when the electric power and energy systems load is in the state-space form
(e.g., [36], [37]), that s,

t
Yi=yo+ /0 (—AY.+hs(B))ds+ Aot + 0wy, @.1)

with an unobserved process
ap="Yar_1+C, (4.2)

where {; ~ N ZD(0,Q;), and initial state distribution &y ~ N (a1,P; ), a1,P; are fixed and known but can
be generalized. Concerning seasonality, it is interesting to study further that (4.1) can capture the seasonality
in the periodicity representation and non-periodic seasonal components in the state equation (4.2).

In other fields than electric power and energy system, we can apply the Gompertzian model

dYt = (—AlOth +gt (&))Ytdt—f—U’Ytdwt

approach to predicting virus, bacterial, and cancer cell growths (e.g., [38]). Exogenous factors that affect
virus, bacterial, and cancer cell growths, e.g., moisture, pH level, oxygen level, and cell deformability; are
included in a time-dependent function g¢ (a) =g+ L1 aiq;(t).
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