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Abstract: Dielectric Elastomer Generator (DEG) stands out as a promising electromechanical device
to harness energy from non-conventional sources owing to its ability to convert mechanical energy into
electrical power. DEG with no rotating part demonstrates a high performance-to-weight ratio with ease in
fabrication and compactness that sets it apart from traditional energy harvesting techniques. Triboelectric
nanogenerators (TENGs) belong to a self-powered class of DEG that capitalizes on low-frequency
and amplitude mechanical sources. Existing models for predicting the performance of TENGs often
assume parameters such as frequency, amplitude, and relative permittivity are constant. However, these
parameters can vary depending on the specific application. In this study, a modified model is proposed to
comprehensively investigate the performance of TENG in real-world conditions considering fluctuations
in frequency, amplitude, and varying relative permittivity of elastomer layers. Results indicate that at a
higher frequency of 55 Hz, there is a significant increase in output voltage, attributed to the higher energy
release rate due to increased velocity. The study also emphasizes the role of the relative permittivity of
TENG layers, revealing that elastomer layers with higher dielectric constants generate more voltage and
power (151%) compared to those with lower values, particularly at a separation distance of 0.1mm. The
findings of this study exhibit notable concurrence with previously reported values and offer a valuable
framework for researchers seeking to tailor energy generators for enhanced performance and precision for
harnessing energy from low-frequency and low-amplitude sources.
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1. Introduction

To reduce the use of non-renewable energy and increase the share of green energy in day-to-day life,
researchers have demonstrated several methods over the years [1]. Progress in technology has provided
a new path to harness the energy from non-conventional energy sources and thus increase green energy.
To convert energy directly from mechanical to electricity, piezoelectric [2, 3], electromagnetic [4, 5],
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Figure 1. Schematic representation of different stages in dielectric elastomer generators [16].

electrostatic [6, 7], triboelectric [8, 9], energy generators have been assessed for different energy sources in
last decades [10–15].

Electrostatic and triboelectric energy generators are promising due to the lack of rotating components
which makes them light in weight and compact [16]. The electrostatic principle used for energy extraction
using Dielectric Elastomer Generator (DEG) consists of an elastomeric membrane layered with compliant
electrodes on each surface and works as a rubbery capacitor. Energy conversion (mechanical to electrical)
takes place with two voltages and a mechanical source in four stages [17–19]. First, the undeformed and
electrically neutral rubber capacitor is stretched by an external mechanical force to get deformed and store
strain energy as shown in Figure 1. In the second stage, an external voltage is supplied to the deformed
membrane due to which an additional charge accumulates on each side of the surface (compliant electrodes).
In the third stage, mechanical force is removed and due to elasticity, it starts to regain its original size
and shape, and charge density gets increased in a particular area. In the fourth stage, increased charge
density is extracted as electrical energy as Voutput > Vinput. Overall, the electrostatic force and charge
are responsible for the energy conversion, therefore the mechanism also termed as an electrostatic energy
generator.

Although DEG can be employed to harness energy, each cycle needs one voltage input Vinput. In this
context, the integration of self-powered triboelectric nanogenerators (TENG), appears to be a promising
alternative to address these limitations of DEG [20]. TENG has emerged as a notable innovation, adept
at converting ambient mechanical energy into scalable electrical output. These devices have gained
attention as a compelling alternative to existing power solutions for self-powered tactile and sensing device
integration [21]. To harvest energy from the ambient sources, electrostatic mechanism-based nanogenerators
piezoelectric nanogenerators (PENG) [22] and triboelectric nanogenerators (TENG) reported by the
researchers [8, 23–25]. PENG is a nanowire-based energy harvester in which nanowires of ZnO is used
to harness energy instead of dielectric elastomer used in TENG. Though, the power generated from
nano-generators are low as compared to DEGs, the self-powering capacity (no input voltage) adds an extra
edge to the PENG/TENG.

The setup of a triboelectric nanogenerator is a type of laminated structure. It consists of a lower
electrode on which dielectric elastomer acts as a medium then some other material or air and finally a
top electrode. The major components of TENG are dielectric elastomer and complaint electrodes [26].
This system resembles with parallel plate capacitor system in which two electrodes act as two parallel
plates and dielectric elastomer and air act as slabs of two mediums (Figure 2). TENG can operate in three
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Figure 2. Schematic representation of different stages in dielectric elastomer generators[16].

configurations, first when, one electrode is kept fixed while the other electrode along with the DE layer
moves towards the fixed layer through an air/dielectric elastomer layer (separation mode) [27]. In the
second configuration where the moving electrodes are just in contact with the upper DE or electrode layer
(contact mode), in this case, there is no additional mechanical force on the moving DE layer. Lastly when
the external mechanical energy force compresses the moving layers between the electrodes (compression
mode). In this study, the investigation was focused on the separation type of TENG.

Unlike electromagnetic generators which operate at high frequencies, triboelectric nanogenerators
(TENGs) work at low frequencies [8]. There is an abundance of low-frequency mechanical energy around,
such as vibration, wind, water waves etc to use as the input source to the TENG. These low-frequency
motions cannot be harvested effectively using electromagnetic or electrostatic generators. This problem
can be overcome by using TENG. Because of its simple structure, ease of fabrication and high efficiency,
TENG can replace the battery in low-power electronic devices. Also, the self-powering nature of TENG
adds an advantage over the DEG. The concept of a self-powering system has been demonstrated by many
researchers in recent years [22, 28–31]. To utilize the low-frequency energy as an input for the TENG,
wang et al. [8] developed a spherical energy generator of 6 cm and used water wave of 1.43 Hz and reported
an output current of 1µA. Behera et al. [32] investigate the self-powered TENG for traffic monitoring
operated at low frequency of 2 Hz and reported the peak voltage of 17.8 V and current of 190 nA. In an
another study Quang et al. [9] used bidirectional air with wind velocity range of 9.2-18.4 m

s and higher
frequency (> 100Hz) as an input energy source and reported higher current output (> 50µA). In a recent
study on TENG Wardhana et al. [27], developed a contact-separation-compression type energy harvester
and used an energy input with an amplitude of 0.2-0.9mm and frequency variation of 1-30Hz and reported
output voltage was in the range of 0.2-2V.

In the prior TENG model, the assessed frequency range was either below 30Hz or exceeding 100Hz.
Yet, typical mechanical systems vibrate within the 10-100Hz range, as seen in household energy generators
and lathes [33]. Also, the effect of induced strain on dielectric permittivity was held constant, although
it does vary with strain [34]. Babu et al. [35] and Hajra et al. [36] investigated the various frameworks
for TENG from a materials perspective and reported that the performance possesses a significant impact
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based on the materials used in the fabrication. To devise an efficient TENG suitable for low-amplitude and
low-frequency vibrating sources, a comprehensive understanding of various parameters is essential. In this
study, we introduce a tailored model to predict the performance of contact-separation-compression type
TENG within real-world settings. This model encompasses variations in frequency, amplitude, and relative
permittivity within the separation mode. The outcomes derived from this adapted model are observed in
good agreement with existing research while showcasing an enhanced voltage output. The modified model
is expected to assist researchers to fabricate or adapt TENG systems for enhanced performance across a
spectrum of vibrating energy sources.

2. Constitutive Model

For a single layer dielectric elastomer-based contact-separation-compression TENG (Error! Reference
source not found.), with an entrapped air and DE thickness of δ and d1 respectively, negligible thickness
of compliant electrodes under the influence of an external electric field (E), the potential drop across the
electrodes can be written as,

∆V = Ed, (1)

D = ϵE = σ, (2)

where, d is the total distance between the two electrodes (i.e., d = dDE + da for separation mode), ϕ is
dielectric flux and σ is charge density. The charge accumulated on the electrodes with an area A can be
calculated in terms of charge density (σ) as,

Q = σA = ϕA. (3)

By using Equations (1) to (3), voltage drop can be rewritten,

∆V =
σ

ϵ
d. (4)

In the separation mode, the resulting electrical potential difference can be expressed in terms of voltage
drop in air (∆V1) and DE (∆V2) layer,

∆V = ∆V1 + ∆V2, (5)

∆V =
ϕ

ϵ0
δ +

ϕ

ϵ0ϵr
d1, (6)

∆V =

(
δ +

d1

ϵr

)
ϕ

ϵ0
, (7)

while the capacitance of the combined layered system,

C =
Q

∆V
(8)

C =
Q(

δ + d1
ϵr

)
ϕ
ϵ0

(9)

C =
ϵ0A(

δ + d1
ϵr

) (10)
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In contact mode, (Figure 2) the dielectric elastomer (Material-1 and 2) layer will be in direct contact
with the upper electrode so, δ = 0, the capacitance in this condition can be calculated by,

C =
ϵ0A(

d1
ϵr

) =
ϵrϵ0A

d1
, (11)

whereas, in compression mode, the thickness of dielectric elastomer is less than the original thickness and
the capacitance can be represented by Equation (7), only the value will change in compression mode. Here,
Kirchhoff’s law and Ohm’s law for the above-discussed layer system are defined as follows:

VR + Vma = 0, (12)

VR = Ri, (13)

i = ima, (14)

qma = KmaCmaVma, (15)

where R is the internal resistance of the data logger, the subscript ma refers to a capacitor consisting of
air and dielectric elastomer, K is the interaction coefficient and the suffix ma represents the interaction
between the air layer and the dielectric elastomer and depends on dδ/dt before contact as follows:

Kma = K f
dδ

dt
= K f

d
dt
{d(x)} =

d
dt
{(1 − cos 2π fvt)Av}, (16)

where, Av is the separation amplitude, fv is the vibration frequency, and K f is the electrification coefficient
considering the experimental conditions. Then, the following equations can be finally derived:

VR = −Vma, (17)

Ri = − qma

KmaCma
, (18)

i =
dq
dt

=
dqma

dt
, (19)

dqma

dt
= − qma

RKmaCma
. (20)

3. Results and discussion

The lower dielectric layer is separated by a thin layer of air (separation mode). The lower electrode
moves upward and ultimately first meets the upper electrode (contact mode) and then compression
(compression mode) of the DE layers takes place. The performance of TENG greatly depends on the
movement of the lower DE layer (velocity). Separation velocity at different frequencies of energy input
shows a similar movement pattern as depicted in Figure 3 with with slight improvement as compared to the
lower frequency. Variation in frequency affects the phase of the vibration, which shows very low impact
on the maximum velocity. For further investigation, the frequency of 55 Hz is considered from all tested
frequencies, as it reaches maximum velocity in a time frame comparable to that of the existing model.

In a previous study [27], the frequency was kept between 10-30 Hz. Whereas mechanical devices
vibrate with a frequency between 10-100 Hz and with lower amplitude (in range of few mm). In present
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Figure 3. Separation velocity of lower dielectric elastomer layer on different frequencies.

work a single frequency of 55 Hz with a similar amplitude (0.2mm) of energy source to TENG is being
considered for the calculation purpose. The modified model gives higher velocity as compared to the
existing model Figure 4. The possible reason for higher velocity may be due to the higher frequency of the
input energy source as for any vibrating energy source, the velocity is the function of amplitude, frequency,
and time.

For TENG, generators the output voltage (V) is another essential aspect and it should be as high as
possible. The result of the modified model (Figure 5(a)) for TENG provides higher voltage output with the
same amplitude of energy source as compared to the existing model for dielectric elastomer generator. The
possible reason for such behaviour may be, the increased velocity of the DE layer. At higher amplitude
and frequency, the gap between the electrodes reduces faster than the lower values of the same data, which
provides less time to release energy from the rubbery-like capacitor structure of the TENG. The percentage
enhancement in the voltage is quite significant in Figure 5(b), the rate at lower amplitude is higher than the
higher value. For the same amplitude and low frequency modified TENG model gives more output voltage
than the contact type usual dielectric elastomer generator [37]. However, design parameters (material
selection, entrapped medium, etc.) also affect the performance of TENG. In the next step, a simulation
study of the selected material effect on the performance of TENG is being carried out.
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Figure 4. Schematic representation of different stages in dielectric elastomer generators[16].

Figure 5. (a) The variation of voltage in triboelectric nanogenerator (TENG) at 55 Hz for modified
model and existing model [15] (b) Enhanced output voltage at various amplitude of input energy source of
constant frequency (55 Hz) as compared to 10 Hz frequency.

For material and design analysis of the Triboelectric Nanogenerator (TENG), we employed COMSOL
Multiphysics with electrostatic and stationary study conditions in a 2D study setup. The TENG design
maintained small, consistent dimensions for each dielectric elastomer layer (30mm × 0.22mm), with
the surrounding medium’s relative permittivity (RP) set at 1. We designated the outer box layer as an
infinite domain, grounding it, while one dielectric elastomer layer received a unique ground voltage of 0V.
Uniform surface charge density was applied to each layer to maintain overall charge neutrality. The initial
electrode state featured a floating potential with distinct positive and negative charges. Subsequently, we
conducted a parametric analysis, adhering to the previously outlined amplitude specifications. From the
result, (Figures 6 and 7) it is quite evident that the two layers accumulate different amounts of voltage. For
an instance with a separation distance (δ) between the layer was 0.1mm the maximum positive voltage
of 3.29V accumulated on the upper layer of the TENG while the negative voltage was lower (3.1V).
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Figure 6. Voltage output for Silicone-VHB pair of dielectric elastomers at a separation distance of 0.1mm.

Figure 7. Voltage distribution on the two surfaces of the TENG in the case of Silicone and VHB.

The possible reason for the different accumulated charge on layers may be the difference in the relative
permittivity of the silicone (εr = 11.7) and VHB (εr = 4.7) Figure 2. Whereas the voltage distribution
along the width (D) of layer was constant.

Further to investigate the influence of the material pair on the performance of TENG, two commercially
available dielectric elastomers Elastosil and silicone were considered. Figure 8 shows the voltage output
at a separation distance of 0.1mm the positive accumulated charge on the upper surface (3.029V) while
negative charge on lower layer (3.021V). The maximum accumulated charge is lesser as compared to the
previous pair of the material (Silicone-VHB). A slightly higher difference in the relative permittivity of the
material may be the reason for such output behaviour of the TENG with Elastosil-Silicone pair of dielectric
elastomers. Figure 9 shows the distribution of charge inside the box along the width and the separation of
the DE layers. Voltage density decreases with both distances from the layers.
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Figure 8. Voltage output for Elastosil-Silicone pair of dielectric elastomers.

Figure 9. Voltage distribution on each side of the dielectric elastomer layer.

In the next step, the Elastosil-VHB material was selected to minimize the gap between relative
permittivity between the two layers. Figure 10 shows the negative and positive distribution of the voltage
on both layers. The upper layer accumulates the positive charge of 7.2V while lower that of -7.84V, which
is higher than as compared to previous two conditions. It is evident from the result, that with the closer gap
in relative permittivity, the maximum voltage accumulation increases significantly in similar conditions.
Figure 11 shows the voltage distribution in the space around the DE layer in TENG. In all three pair
materials, the lower layer of DE was moving while keeping the upper fixed [38].

Figure 12 shows the comparison between the considered pairs of DE layers to study the performance of
TENG output performance. The output voltage (Vout) increases with the increase in separation distance
and indicates a higher amplitude energy input requirement to generate the deformation in the layer. A
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Figure 10. Voltage accumulation on different dielectric elastomer (DE) layers (Elastosil-VHB).

Figure 11. Voltage distribution with gap and along the length of the DE layers in the case of Elastosil-VHB.

general household vibrating machine has amplitude in the range of a fraction of mm, so the considered
separation distance was kept 0.1mm [33].

Further, the electrical energy stored in the TENG system was investigated. Figure 14 shows the variation
in the amount of total electrical energy stored with the phase angle of the vibrating source. In Elastosil-VHB
and Silicone-VHB pairs the amount of stored energy is the same, while for Elastosil-Silicone it is higher.
The possible reason for the difference in stored energy may be the permittivity of the moving layer. In the
first case of lower energy, the moving layer was VHB while in the higher condition, it was Silicone [37].

The varying energy outputs (0.0390 µ W for Elastosil-silicone, 0.0976 µ W for Elastosil-VHB, and
0.0388 µ W for silicone-VHB) in TENG arise from differences in triboelectric properties and mechanical
interactions of the materials. Elastosil and silicone, being similar in triboelectric behaviour, yield a modest
energy output, whereas Elastosil paired with VHB, which has contrasting triboelectric characteristics,
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Figure 12. Maximum voltage accumulated on the layers of the DE at different separation distances.

Figure 13. Total electrical energy stored in TENG with the phase of vibrating source for different pairs of
material.

exhibits higher energy generation due to enhanced charge transfer efficiency [39–41]. Additionally, the
results align with Yadava et al. [42], supporting the statement that electronic devices require a high dielectric
constant and low losses. The lower output of the silicone-VHB combination can be attributed to less
effective contact and charge separation mechanisms influenced by material compatibility and surface
conditions. The energy conversion efficiencies of 24.69%, 70.4%, and 32.06% for these material pairs
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Figure 14. Output power of TENG in various layers combinations.

reflect these differences, predominantly influenced by varying mechanical properties impacting the overall
efficiency of energy conversion. The efficiency of TENG can be further improved by reinforcing the various
particle in base DE matrix to improve the dielectric constant [43–46]. All the studies have been carried out
at atmospheric conditions, i.e., constant temperature of 298.15K, pressure of 1atm, however, the stability of
the TENG can be affected by the materials ageing as it consists of elastomer layers, mechanical wear and
fatigue, as well as the other change environmental conditions which will be focused in future investigation.

4. Conclusions

The present study highlights the potential of Triboelectric Nanogenerators (TENG) within the domain of
green energy. TENG, as dielectric elastomer generators promises to extract energy from non-conventional
sources, making it relevant in the search for sustainable energy solutions. TENG subjected to real-time
vibrating energy conditions involves variation in both amplitude and frequency. The effects of varying
frequency, at a consistent amplitude of 0.2mm, lead to an increment in velocity. At a higher frequency
of 55 Hz, the output voltage increases can be attributed to the augmented release rate of energy, from
higher velocity. It is essential to emphasize that output voltage is dependent on the relative permittivity
of the TENG layers as well. Specifically, at a separation distance of 0.1mm, elastomer layers with low
dielectric constant accumulated less voltage when compared to their counterparts possessing higher values.
Furthermore, the separation distance exerted a considerable influence on voltage output, results indicate that
increasing the separation distance in TENG led to enhanced voltage output. However, higher separation
distances necessitate a source of energy with greater amplitude, which limits the application of TENG. The
modified model holds the potential to aid researchers in the construction or adaptation of energy harvesters,
specifically tailored to harness energy from low-frequency and low-amplitude vibrating sources.
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