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Abstract: Dual Numbers are an extension of real numbers known for its capability of performing
exact automatic differentiation of one-valued functions theoretically without error approximation. Also,
Differential Kinematics of robots involves the computation of the Jacobian, which is a matrix of partial
derivatives of the Forward Kinematic equations with respect to the robot’s joints. Thus, to perform the
automatic calculation of the Jacobian matrix, this paper presents an extension of dual numbers composed
of a scalar real part and a vector dual part, where the real part represents the angular value of the robot
joint, and the dual part represents the direction of the corresponding partial derivative for each joint.
The presented method was implemented in Matlab through Object Orientes Programming (OOP), and
the results for calculating the Jacobian of the KUKA KR 500 robot model for 1000 random postures
were subsequently compared in terms of execution time and Mean Squared Error (MSE) with other
conventional methods: the geometric method, the symbolic method, and the finite difference method. The
results showed a significant improvement in the computing time for calculating the Jacobian of the robotic
model compared to the other methods, as well as a minimum MSE having as reference the numerical
value of the symbolic calculations.
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1. Introduction

In the rapidly developing field of robotics, the use of mathematical tools has become essential for
overcoming the complex challenges associated with motion analysis and optimization. As robotics
continues to advance, accuracy and productivity remain at the forefront of research and development efforts.
The reliance on mathematical tools in this context is reflected by the growing acknowledgement of their
indispensability. These tools play a pivotal role in enabling engineers and researchers to effectively analyze
and optimize robotic movements. Such movements often involve intricate calculations that require precise
measurements and sophisticated algorithms to ensure accuracy and efficiency. Thus, the integration of
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advanced mathematical techniques is crucial in pushing the boundaries of robotics and propelling the field
forward [1].

Among these tools of mathematics, dual numbers—first introduced by Clifford in his landmark work
[2]—stand out as especially prominent. They are a carefully constructed extension of the real number
system, and they provide the field with a multitude of uses that are fundamental to it. These special
numerical objects, which are characterized by their two components, which include real and dual parts, are
highlighted by providing a clear and complete picture that combines spatial position and orientation. This
mixing, frequently combined with other mathematical constructions like quaternions, results in the concept
of dual quaternions [3]. Also, as explained further in [4], dual numbers can be employed with rotation
matrices, effectively capturing the complex spatial arrangements that are intrinsic to robotic systems. As
we continue to refine our understanding of robotic functions, the use of two numbers not only improves our
understanding of complex kinematics but also opens up a new avenue for tackling the complex mathematics
that underpin the field’s ongoing development.

Moreover, the wide-ranging impact of two numbers also resonates in the field of Automatic
Differentiation (AD), a crucial method used to calculate gradients precisely, a crucial aspect of negotiating
the complex landscapes of optimization with skill and accuracy [5]. As such, the research project described
in [6] takes a position that emphasizes the inherent value of AD techniques for scalar functions. This
restricted scope leads to an awareness of its intrinsic limits, which become especially apparent when one
is faced with the complex problem of calculating Jacobians for rotation elements in the Lie group SO(3),
which is of great importance in the field of robotics. As a result, the research adopts a forward-thinking
approach by extending the AD theory’s boundaries to successfully include differentiable manifolds. This
enormous extension is completed with the release of a finely tuned C++ library, which is a realization
of this expanded theory, complete with the powerful incorporation of template-based expressions. This
novel combination provides scholars and professionals with an easy-to-use interface for quickly performing
Jacobian analyses, which is a big step in the direction of increasing the effectiveness and availability of
these crucial calculations.

Similar to how the extension of complex numbers results in quaternions, which allow for the
sophisticated representation of spatial rotations, the extension of dual numbers also leads to hyper-dual
numbers. This is a very promising mathematical construct that was investigated by looking at its algebraic
properties in the context of kinematics [7]. It empowers the modeling of complex multibody kinematics
and opens the door to the formulation of dynamic equations controlling the motion of rigid bodies when
combined with the powerful tools provided by the field of Lie groups [8]. By means of this complex
interplay of ideas, the foundations of hyper-dual numbers and their relation to Lie group theory become a
powerful tool for addressing the intricacies of physical motion and interaction in a way that harmonizes
application and abstraction.

It is necessary to compute second-order position derivatives in the field of mechanics, in addition to
first-order differentials. The formulation of Newton’s second law depends on this computation. This need
serves as a motivation for the research described in [9], where the direct evaluation of motion equation,
which includes positional derivatives such as acceleration and velocity, is made possible by the use of
hyper-dual numbers. These results are strikingly truncation-free, which distinguishes them from other
numerical differentiation approximations. Higher-order derivatives must be analyzed in the context of
mechanical modeling because of this crucial second derivative. Then, as mentioned in [10], the third
derivative, called jerk, and the fourth derivative, called jounce or snap, have importance in this field. Based
on this assumption, the study published in [11] presents an expanded formulation using dual numbers. This
expression is a deliberate reaction directed towards the calculation of higher-order derivatives, adding to
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the larger collection of mathematical instruments accessible for dealing with the complex intricacies of
mechanical dynamics.

Turning to yet another important aspect, robotics is centered on the complex process of calculating the
Jacobian matrix, which is a basic concept with broad application in research and development [12]. This
matrix, which contains the derivatives that relate joint velocities to end-effector velocities, serves as the
foundation for a variety of numerical techniques, the most important of which being the kinematic inversion
technique [13]. By integrating this inversion mechanism, robotic systems can move backward from desired
states of the end-effector to matching joint configurations. This provides useful information about possible
paths for obtaining accurate and dynamically adaptive motions [14]. But the Jacobian matrix’s impact goes
far beyond its use in simple motion analysis; it has a profound impact on more complex techniques like
trajectory planning, obstacle avoidance, and developing robust control strategies, which emphasizes the
matrix’s essential and indispensable status in the field of robotic studies [15]. The thorough understanding
and deft manipulation of the Jacobian matrix contribute to our growing understanding of robotic locomotion
and set the stage for a plethora of novel applications that have the potential to push the limits of robotic
capabilities.

Our current study represents a significant advancement in this regard, leveraging the powerful
combination of dual numbers and the field of robot kinematics. We present a framework that directly
computes the Jacobian matrix, a task that typically requires a rigorous geometric approach, by utilizing
the special properties of dual numbers. Using dual numbers composed by a scalar real part and a vector
dial part to represent the robot’s joint variables, we build a paradigm that aesthetically combines joint
values and matrices into a cohesive whole. This clever synthesis offers a novel and potent approach to
solving persistent problems in robot motion analysis, in addition to promising an increase in computational
efficiency. It was demonstrated the effectiveness of this approach with thorough validation on the sturdy
of the 6-degree-of-freedom (DoF) KUKA KR 500 robot through the calculation of the Jacobian matrix
corresponding to each of 1000 random configuration of the robot and comparing these results with the output
of other conventional approaches (the geometric, symbolic, and finite difference methods), where in terms
of computation time and MSE, the presented method represented a significant breakthrough, demonstrating
the unrealized potential of combining complex mathematical structures with the complexities of robotic
systems.

The following is a description of the study’s organizational framework: In Section II, the formulation
and development of the suggested method for the direct calculation of the Jacobian matrix via the novel
use of dual numbers are explained in detail. Moreover, in the same section, a thorough explanation of the
kinematic model used to support the assessments relevant to the suggested approach is provided, as well
as the presentation of the methods to be compared. Section III, which follows, is devoted to presenting
the findings from the conducted experiments and, in doing so, effectively contrasting the efficiency of the
suggested strategy with the traditional methods that are employed to compute the Jacobian matrix. The
final manifestation of this work’s culmination is found in Section IV, where thorough conclusions were
drawn.

2. Methods and Materials

2.1. Preliminary Concepts

As mentioned in previous lines, Clifford introduced the dual numbers set, represented by D in this
article, in the latter part of the 19th century, as was previously mentioned [2]. This extension of real
numbers are represented by the following format of expressions:
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x̂ = xr + εxd, (1)

where both xd and xr belong to real numbers R and represent the dual and real parts of the dual number x̂,
respectively. Also, it is worth mentioning that the dual entity ε satisfies the property ε2 = 0 where ε ̸= 0.
This numerical group, like other sets such as real and complex sets, meets certain arithmetic properties that
are highlighted below.

• Addition
As can be seen in equation 2, the sum of two dual numbers the result is another dual number,

closing property x̂ + ŷ ∈ D, whose real part is the sum of real parts and the dual part is the sum
of dual parts of the dual numbers to be added. This operation also satisfies the associative property
(x̂ + ŷ) + ẑ = x̂ + (ŷ + ẑ), and commutative property x̂ + ŷ + ẑ = x̂ + ẑ + ŷ [16].

x̂ + ŷ = (xr + yr) + ε(xd + yd). (2)

• Additive identity
The existence of the additive neutral element ϕ+ indicates that every dual number added with this

element, the result is itself x̂ + ϕ+ = x̂ [16].

ϕ+ = 0 + ε0. (3)

• Additive inverse
As shown in equation 4, every dual number x̂ has its inverse additive −x̂; which when added

results in the additive identity x̂ +−x̂ = ϕ+ [16].

−x̂ = −xr − εxd. (4)

• Multiplication
The multiplication of two dual numbers the result is another dual number, closing property

x̂ · ŷ ∈ D, whose real part is the multiplication of real parts of these numbers and the dual part is the
sum of the product between the dual with the real parts of these numbers [16], as is shown in equation
5. It is worth mentioning that given that xr, xd, yr, yd, zr, zd ∈ R, then is also satisfied the associative
property (x̂ · ŷ) · ẑ = x̂ · (ŷ · ẑ), and commutative property x̂ · ŷ · ẑ = x̂ · ẑ · ŷ; which is not true is
that the real and dual part of these numbers belong to other sets whose operations are not commutative
nor associative as in the case of quaternions.

x̂ · ŷ = (xr · yr) + ε(xr · yd + xd · yr). (5)

• Multiplicative identity
Similarly with the addition operation, the multiplicative neutral element, indicated in the equation

6, denotes that every dual number multiplied with this element, the result is itself x̂ · ϕ· = x̂ [16].

ϕ· = 1 + ε0 (6)

• Inverse multiplicative
With the exception of dual numbers whose real part is zero xr = 0, all other dual number x̂ has its

inverse multiplicative x̂−1; which when multiplied, the result is the multiplicative identity x̂ · x̂−1 = ϕ·
[17].
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x̂−1 =
1
xr
− ε

xd

x2
r

. (7)

Now, the most important property that owns the dual numbers is their capability to compute automatic
differentiation of one-valued functions ( f : R→ R). This last property can be demonstrated through the
Taylor Series of a one-valued function f valued at the dual number x̂ around its real part xr, as is shown in
8; here, the terms whose derivative order is greater than one are canceled due to the dual number property
ε2 = 0 [17].

f (x̂) = f (xr) +
f (1)(xr)

1!
(εxd) +

f (2)(xr)

2! ����*
0

(εxd)
2 +

f (3)(xr)

3! ����*
0

(εxd)
3 + ... . (8)

Therefore, the result of the expression 8 is the equation 9, where it is proven that a function valued on a
dual number, the result is also a dual number, whose real part is the evaluation of the function on xr, and
the dual part is the multiplication of the dual part xd by the first derivative of the function valued at xr.
Hence, if it is required that in the dual part just be the derivative of the function, then xd = 1 [18].

f (x̂) = f (xr) + εxd f (1)(xr). (9)

A fact that reflects the veracity of the property of automatic differentiation that this numerical set
possesses is found in the definition of its multiplicative inverse, which for real numbers would be just
simply 1

xr
as long as xr ̸= 0. However, in the dual part of equation 7 is exactly the derivative of 1

xr
, which

is −1
x2

r
, multiplied by the dual value xd as stated in equation 9.

2.2. Extending to Dual Numbers for Partial Derivatives of Multivalued Functions

Until now, it was presented the capability of ordinary dual numbers to compute automatic differentiations
for one-valued functions. Nevertheless, for multivalued functions ( f : Rn → R) the first derivative is found
in an array of the first partial derivative of the function’s output with respect to each of its inputs, known
as the gradient of the function f . Thus, to extend the capacity of dual numbers to perform the automatic
computation of multivalued function’s gradients, we present a variety of dual numbers composed by a
scalar value as the real part, and a vector as the dual part, as shown in equation 10.

x̂ = x + ε⃗v. (10)

Here, x ∈ R and v⃗ ∈ R1×n; for this reason, this set of extended dual numbers is denoted as DR⊕Rn ,
where D represents the set of dual numbers, R denotes the real numbers (scalars), Rn represents a vector
space of dimension n over the real numbers, and ⊕ indicates the direct sum of these sets. And like any
numerical set, this one has arithmetic properties of internal composition, as shown in the following items.

• Addition
Like ordinary dual numbers, this operation satisfies the properties of closure, commutativity and

associativity. But this operation can occur as long as the dimension of the vector of the dual part of x̂1
is equal to the dimension of the vector of the dual part of x̂2.

x̂1 + x̂2 = (x1 + x2) + ε(⃗v1 + v⃗2). (11)

• Additive identity
In this case, the additive neutral element is one whose scalar part is 0 and its dual part is a vector

with all components equal to 0.
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ϕ+ = 0 + ε
[
0 0 0 . . . 0

]
[1×n] . (12)

• Additive inverse
The additive inverse is only the negation of the scalar term, as well as the negation of all components

of the vector of the dual part.

−x̂ = −x− ε⃗v. (13)

• Multiplication
This operation, as happened with ordinary dual numbers, complies with the property of closure,

commutativity and associativity. It is important to note that the property ε2 = 0 is what allows only
scalar values to exist in the real part, while only vector values exist in the dual part. And as in the case
of addition, this operation can only be carried out if the dimension of the vectors of the vector parts of
the numbers x̂1 and x̂2 are equal.

x̂1 · x̂2 = (x1 · x2) + ε(x1 · v⃗2 + x2 · v⃗1). (14)

• Multiplicative identity
The multiplicative neutral element has only unity as a scalar value, therefore, the components of

the vector of the dual part are all 0.

ϕ· = 1 + ε
[
0 0 0 . . . 0

]
[1×n] . (15)

• Inverse multiplicative
Due to the fact that the inverse of a dual number only depends on its real value being different from

0, the formula is not different from the property of the multiplicative inverse of ordinary dual numbers.
In this case, the vector is negated and divided by the square of the scalar value of the extended dual
number.

x̂−1 =
1
x
− ε

v⃗
x2 . (16)

Regarding the result of operating on the extended dual numbers of the set DR⊕Rn with scalar values,
this is discussed in the following items.

• Multiplication by a scalar
In this case, the scalar value is distributed to both the real part and the dual part of the element of

DR⊕Rn .

λ · x̂ = λ · x + ελ · v⃗. (17)

• Addition with a scalar
Here the scalar number can be considered as an element of the set DR⊕Rn whose vector part is of

the same dimension as that of the element x̂, but with all the components of the vector equal to 0.
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λ + x̂ = (λ + x) + ε⃗v. (18)

Now, to compute the gradient of a multivalued function, if the function f has n inputs, then n extended
dual numbers will be created whose dual part has a vector of n components. Thus, for the first input it will
be indicated that the first component of its vector is 1 while the others will be 0, this will indicate that the
derivative with respect to the first input of the function will be found in the first component of the vector of
the dual part; with this same logic, we proceed with the second input of the function, where this time it is
the second component of its vector that will have the value of 1 and the other components will be equal
to 0, which will indicate that the partial derivative with respect to the second input will be found in the
second component of the vector of the dual part of the number resulting from the evaluation of f ; and so on
consecutively for the other numbers as is indicated in 19.

x̂1 = x1 + ε[1 0 . . . 0][1×n]
x̂2 = x2 + ε[0 1 . . . 0][1×n]

...
x̂n = xn + ε[0 0 . . . 1][1×n]

. (19)

The result of evaluating the multivalued function f with these extended dual numbers x̂1, x̂2, ..., x̂n
will be another element of DR⊕Rn whose scalar part will be the function f evaluated in the scalar parts
x1, x2, ..., xn, while the part dual will be the gradient vector of the function f , as shown below as,

f (x̂1, x̂2, ..., x̂n) = f (x1, x2, ..., xn) + ε∇ f . (20)

The extended dual numbers that form the system of equations 19 can be summarized and compacted
into a single matrix expression, as shown in equation 21. Where the dual column vector X̂ is equal to
the column vector of scalar values X̂ plus the dual part, which is a square matrix M composed by the
vertical stack of the vectors of the dual parts of the numbers x̂1, x̂2, ..., x̂n; vectors which form a canonical
or standard basis for an n-dimensional space, which generates that the matrix M be the identity matrix.
The expression 21 also allows generalizing the basis for an n-dimensional space, then the matrix M can be
any matrix of rank and dimension n.

X̂[n×1] = X[n×1] + εM[n×n]. (21)

In this way, in a more general way expression 20 can be rewritten as shown in equation 22, where the
role of M as a transformation matrix for the gradient vector of the function is highlighted, being the trivial
case when the row vectors that make up this matrix are the canonical basis for an n-dimension space, which
makes the matrix M the identity matrix and therefore the gradient vector is not altered.

f (X̂[n×1]) = f (X[n×1]) + ε∇ f M[n×n]. (22)

Finally, for the general case of a multivalued vectorial function ( f : Rn → Rm), in this case what will
multiply the matrix M will no longer be the gradient vector, but rather the Jacobian matrix of the function f
as is expressed in equation 23, and in this way the automatic calculation of the Jacobian matrix is carried
out. It is important to highlight the similarity that equation 23 has with equation 9 of ordinary dual numbers,
where in both cases automatic differentiation is carried out, but in one it is carried out for multivalued
vector functions and in the other for unvalued functions.

f (X̂[n×1])[m×1] = f (X[n×1])[m×1] + εJ[m×n]M[n×n]. (23)
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For the present work, since it is about the calculation of the Jacobian matrix, then we will work with the
canonical bases for an n-dimensional space, which means that the matrix M will be the identity matrix.

2.3. Calculation of the Numerical Jacobian for Forward Kinematics Using Dual Numbers

To apply the theory presented in the previous lines, to calculate the value of the Jacobian matrix
automatically from the forward kinematics equation, which is a multivalued vector equation. For each i
joint of the n-degree of freedom robot, a dual number belonging to the set DR⊕Rn denoted by q̂i will be
created, according to the logic indicated in the equation 19. In this way, to represent the set formed by all
these n dual numbers, the notation Q̂[n×1] will be adopted, according to the notation presented in 21.

To calculate the forward kinematics (FK), homogeneous transformation matrices (HTM) were used,
which are matrices of 4× 4 elements, which represent transformations of the reference frames between
the frames of the robot links until reaching the end effector through matrix multiplications as is shown in
equation 24, where in general the matrix Ti−1

i (q̂i) indicates that is the transformation of the joint frame
i− 1 to the joint frame i, and is also in function of the joint q̂i [19].

FK(Q̂[n×1]) = T0
1 (q̂1)T1

2 (q̂2) . . . Ti−1
i (q̂i) . . . Tn−1

n (q̂n). (24)

Once computed the FK, the result is a 4 × 4 HTM mainly composed by a 3 × 3 rotation matrix
R(Q̂[n×1]), and a column position vector P(Q̂[n×1]) as is indicated in the following equation.

FK(Q̂[n×1])[4×4] =

[
R(Q̂[n×1])[3×3] P(Q̂[n×1])[3×1]

[0][1×3] 1

]
. (25)

With the position vector P found in the equation 25, the calculation of the linear velocity Jacobian Jv is
straightforward, because this matrix is found directly in the dual part of the resulted number as is proved in
the equation 26.

P(Q̂[n×1])[3×1] = P(Q[n×1])[3×1] + εJv [3×n]. (26)

Unlike the angular velocity Jacobian Jω, which can not be directly found in the dual part of the equation
27. This is because the derivative of a rotation matrix is a tensor of 3× 3× n, which doesn’t belong to the
rank of a matrix.

R(Q̂[n×1])[3×1] = R(Q[n×1])[3×3] + εR′[3×3×n]. (27)

Nonetheless, the angular velocity Jacobian can be calculated indirectly through the multiplication of the
derivative of the rotation matrix R′ with its transpose RT, which in deed can be found directly as terms of
the equation 27. The result is this multiplication is an antisymmetric matrix in whose components that do
not belong to its diagonal are the gradients (ωx, ωy, ωz), as is indicated in the following equation.

R′RT =

 0 −ωz [1×n] ωy [1×n]
ωz [1×n] 0 −ωx [1×n]
−ωy [1×n] ωx [1×n] 0

 . (28)

Therefore, with the result can be formed the angular velocity Jacobian through stacking the previously
calculated gradient vectors as indicated in equation 29.
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Jω [3×n] =

ωx [1×n]
ωy [1×n]
ωz [1×n]

 . (29)

And finally, the total Jacobian matrix of FK becomes the vertical stacking of the linear velocity Jacobian
matrix together with the angular velocity Jacobian matrix.

J[6×n] =

[
Jv [3×n]
Jω [3×n]

]
. (30)

It is important to indicate that equation 28 may not be necessary and directly calculate the Jacobian
matrix of angular velocity or directly the entire Jacobian matrix if other tools are used to calculate the
transformations of the FK reference frames, such as dual quaternions.

Below is a pseudocode as a summary of the steps to follow to perform the automatic calculation of
the Jacobian matrix through dual numbers. It is worth mentioning that the elements of set DR⊕Rn are
implemented at the code level using OOP in MATLAB.

Algorithm 1: Algorithm to Compute the Jacobian Matrix through Dual Numbers
Data: [q̂1, q̂2, . . . , q̂n], HTM
/* HTM is a function that calculates the homogeneous transformation matrix from a joint and its
index i */
Result: y = J
N ← n;
i← 1;
FK ← I; /* Start with a 4× 4 identity matrix */
while i ≤ N do

FK ← FK · HTM(q̂i, i);
i← i + 1;

end
P← FK(1 : 3, 4);
Jv ← P.dual;
R← FK(1 : 3, 1 : 3);
RR← R.dual · R.real.T;
ωx ← RR(3, 2);
ωy ← RR(1, 3);
ωz ← RR(2, 1);
Jω ← [ωx; ωy; ωz];
J ← [Jv; Jω];

2.4. Comparison Methods

For this work, 3 methods were used to compare the execution time for calculating the Jacobian matrix,
these methods were: Geometric method, symbolic method, and the finite difference method. Because the
implementation of a class causes a delay in calling its methods and attributes, to make a fair comparison, a
class for real numbers was also implemented in MATLAB, which were used in the comparison methods.
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On the other hand, to compare the error of the Jacobian matrix obtained by these methods, including the
proposed method, the numerical values of the result of the symbolic Jacobian were considered as reference
values. The calculation of the Mean Square Error (MSE) was carried out with the following formula,

MSE =
∑6

i=1 ∑n
j=1(Js(i, j)− Ĵ(i, j))2

6 · n , (31)

where Js is the numerical value of the symbolic Jacobian once its terms are replaced by the values
corresponding to a configuration of the robot, while Ĵ is the Jacobian value obtained by another method
other than the symbolic method.

2.4.1. Geometric Method

This method stands out in its ability to efficiently compute the Jacobian matrix for a kinematic chain
derived from the Denavit-Hartenberg algorithm. The crux of its effectiveness lies in the systematic
propagation of velocity through the entire kinematic chain, adeptly capturing the nuanced interactions at
each joint and culminating in a comprehensive representation at the end effector [20]. This distinctive
methodology not only attains remarkable computational speed but also ensures a high degree of accuracy,
making it an invaluable tool in the realm of robotic kinematics.

This method operates in two stages. In the first stage, the forward kinematics are computed using
the homogeneous transformation matrices, denoted as FK = T0

1 T1
2 · · · Tn−1

n . Subsequently, the second
stage involves determining the contribution of each joint to the velocity of the end-effector. This is
accomplished by computing the forward kinematics of each joint, denoted as FKi = T0

0 T0
1 · · · T

i−1
i ,

where T0
0 represents the identity matrix of dimensions 4× 4. Depending on the joint type indexed by

i, the subsequent steps vary. In the case of a revolute joint, it becomes necessary to compute the vector
pi

n = FK(1 : 3, 4)− FKi(1 : 3, 4), signifying the distance between the end-effector and the position of the
corresponding joint i. Equation 32 illustrates the computation of a column in the Jacobian matrix according
to this method.

Ji [6×1] =



[
z0

i−1 × pi−1
n

z0
i−1

]
if j is a revolute joint

[
z0

i−1

[0][3×1]

]
if j is a prismatic joint

. (32)

Subsequently, upon the completion of the computation for each column of the Jacobian matrix, the final
step involves the horizontal concatenation of these vectors, as exemplified in equation 33. This process
results in the formation of the complete Jacobian matrix, denoted as J, representing the comprehensive
mapping of the joint velocities to the end-effector’s linear and angular velocities.

J[6×n] =
[

J1 J2 . . . Jn
]

. (33)

For a more comprehensive understanding, the pseudocode for implementing this method is presented
below. This pseudocode meticulously encapsulates the sequential steps elucidated earlier.

2.4.2. Symbolic Method

This method uses the power of symbolic calculus to first symbolically calculate the direct kinematics, and
then computes the Jacobian matrix using symbolic differentiation of the resulting FK equation. Although it
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Algorithm 2: Algorithm to Compute the Jacobian Using the Geometric Method
Data: [q1, q2, . . . , qn], HTM
/* HTM is a function that calculates the homogeneous transformation matrix from a joint and its
index i */
Result: y = J
N ← n;
i← 1;
FK ← I; /* Start with a 4× 4 identity matrix */
while i ≤ N do

FK ← FK · HTM(qi, i);
i← i + 1;

end
i← 1;
FKi← I; /* Start with a 4× 4 identity matrix */
J ← [];
while i ≤ N do

z← FKi(1 : 3, 3);
if i is a revolute joint then

p← FK(1 : 3, 4)− FKi(1 : 3, 4);
Ji← [z× p; z];

else
Ji← [z; 0; 0; 0];

end
J(:, i)← Ji;
FKi← FKi · HTM(qi, i);
i← i + 1;

end

is a general method for any formulation of equations, in itself, the symbolic calculation is very slow, so
only the time it takes to carry out the substitution and evaluation of the numerical variables in the equation
of the Jacobian matrix will be taken into account [21].

2.4.3. Finite Difference Method

This is a general method that allows approximating Jacobian matrices by performing finite differences
based on the definition of the derivative [22]. For a multivalued vector function ( f : Rn → Rm), the ith
column of its respective Jacobian matrix can be approximated using the equation 34 and therefore, the
complete Jacobian matrix is calculated by horizontally stacking these columns as in equation 33. It should
be noted that for this work we used a ϵ = 10−5.

JT
i ≈

f (x1, x2, . . . , xi + ϵ, . . . , xn)− f (x1, x2, . . . , xi, . . . , xn)

ϵ
. (34)

Now, for the direct kinematics function, since HTMs are used, then this function is of type ( f : Rn →
R4×4). So to apply equation 34, what is done is to turn the FK a vector composed of the horizontal stacking
of the transpose of its columns, as shown in equation 35.
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f[1×12] = [FK(1 : 3, 1)T, FK(1 : 3, 2)T, FK(1 : 3, 3)T, FK(1 : 3, 4)T]. (35)

However, the Jacobian matrix obtained with equations 34 and 33, called Ja [12×n], is not the matrix
that interests us. But it is known that the last 3 rows of this are the rows of the linear velocity Jacobian
jv = Ja(10 : 12, 1 : n). Then what is done is to calculate a vector matrix that becomes the derivative of the
rotation matrix as indicated in equation 36, and this matrix is multiplied by the transpose of the rotation
matrix as indicated in 28 and finally these results are concatenated using equation 30.

R′ =

Ja(1, 1 : n) Ja(4, 1 : n) Ja(7, 1 : n)
Ja(2, 1 : n) Ja(5, 1 : n) Ja(8, 1 : n)
Ja(3, 1 : n) Ja(6, 1 : n) Ja(9, 1 : n)

 . (36)

The steps of this method are illustrated below with the following pseudocode.

Algorithm 3: Numeric Jacobian Calculation using Finite Differences
Data: FK, Q, ϵ
/* FK is a predefined function that calculates forward kinematics, and Q is an array of joint values */
Result: J
n← length(Q); /* Dimension of the input Q */
FK0← FK(Q); /* Calculate f0 when no perturbation happens */
f 0← [FK0(1 : 3, 1)T, FK0(1 : 3, 2)T, FK0(1 : 3, 3)T, FK0(1 : 3, 4)T];
Ja← zeros(length( f 0), nx);
for i← 1 to nx do

Qplus ← Q;
Qplus(i)← Q(i) + ϵ;
FK1← FK(Qplus);
f 1← [FK1(1 : 3, 1)T, FK1(1 : 3, 2)T, FK1(1 : 3, 3)T, FK1(1 : 3, 4)T];
Ja(:, i)← ( f 1− f 0)/ϵ;

end
jv ← Ja(10 : 12, 1 : n);
dR← [Ja(1 : 3, 1 : n), Ja(4 : 6, 1 : n), Ja(7 : 9, 1 : n)];
RR← dR · FK0(1 : 3, 1 : 3).T;
ωx ← RR(3, 2);
ωy ← RR(1, 3);
ωz ← RR(2, 1);
Jω ← [ωx; ωy; ωz];
J ← [Jv; Jω];

2.5. The Robotic Model

The KUKA KR 500 robotic model, is the model that was used in this work to obtain the Jacobian
matrix. With six degrees of freedom (DoF), this advanced robotic arm is used in industrial settings. It
is purposefully made to handle challenging tasks and adapt to the changing needs of dynamic industrial
environments [23].
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Within the framework of this model, the DH parameters were obtained by means of the examination of
the research report [23]. The kinematic framework of the robotic system was established based on these
essential parameters, which are listed in Table 1.

Table 1. Denavit-Hartenberg parameters of the robotic model.

Joint N◦ Denavit-Hartenberg Parameters

θi(rad) di(m) ai(m) αi(rad)

1 q1 -1.045 0.500 π
2

2 q2 0 1.300 0
3 q3 +

π
2 0 0.055 −π

2
4 q4 -1.025 0 π

2
5 q5 0 0 −π

2
6 q6 -0.290 0 π

Table 2 presents the limits for each articulation in this robotic model. These limits will be taken into
account when creating 1000 random points, all of which must be within the robot’s task space in order to
calculate the Jacobian matrices for each joint configuration.

Table 2. Robot joint limits.

Joint
N◦ θmin(deg) θmax(deg)

1 −185◦ 185◦

2 −40◦ 110◦

3 −184◦ 60◦

4 −350◦ 350◦

5 −118◦ 118◦

6 −350◦ 350◦

3. Tests and Results

Figure 1 presents the point cloud resulting from 1000 random configurations for each of the 6 axes
of the case study robotic model. These configurations were generated within the joint limits specified
in Table 2. This diverse set of joint positions spans a wide range of possible robot states, providing a
comprehensive view of its workspace.

Regarding the comparison of the calculation time of the Jacobian matrix between the 4 intervening
methods: method with dual numbers, geometric method, symbolic method, and method with finite
differences. Figure 2 shows a violin plot where the distribution of the data of the time spent for each of the
evaluated methods can be seen. At first glance, it may seem that the dual number method is the method that
has the least time invested to calculate differential kinematics.

But to better appreciate these differences, Table 3 shows the minimum, maximum, median, mean, and
standard deviation values for the time data of each method, where the minimum values in each column are
highlighted in bold. In this way, it is evident that in all these categories, the method that uses dual numbers
is the one with the least investment of time.

Now, regarding the error in the calculation of the Jacobian matrix, Figure 3 shows the violin diagram of
the logarithm with base 10 of the MSE, according to the equation 31, for 3 methods with the exception
of the symbolic method, because as had been clarified previously, the numerical values of this method
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Figure 1. Robot posture cloud for 1000 random configurations.

Figure 2. Violin plot of Jacobian matrix computation time for each compared method.
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Table 3. Computation times for different methods.

Method Computation Time (s)

Min Max Median Mean
Standard
deviation

Dual
Numbers 0.0487 0.2556 0.0736 0.0806 0.0279

Geometric 0.0889 0.5407 0.1289 0.1328 0.0281
Symbolic 1.0920 1.8438 1.1428 1.1865 0.0983

Finite
differences 0.1635 0.3944 0.1718 0.1846 0.0270

were used for the basis of this comparison. So, what can be seen in this figure is that both the method that
uses dual numbers and the geometric method are those that have approximately an exponential degree of
error of -16 with respect to the symbolic values. Unlike the finite difference method, whose error has an
exponential degree of -6 approximately.

Figure 3. Violin plot of the logarithm of the MSE error relative to the results of the symbolic calculation.

To better clarify what is visualized in the previous figure, Table 4 shows the statistics of the error data.
Where it is evident that the geometric method is the one that has the lowest values in all the metrics in the
table, with the exception of the standard deviation. However, it is also possible to show that the values of
the logarithm of the MSE for the method that uses dual numbers are very close to those of the geometric
method, so both have close performances.
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Table 4. Logarithm of the Error for Different Methods.

Method Logarithm of the MSE

Min Max Median Mean
Standard
deviation

Dual
Numbers -16.727 -15.690 -16.228 -16.229 0.139

Geometric -17.150 -15.893 -16.387 -16.397 0.164
Finite

differences -6.630 -5.910 -6.266 -6.269 0.124

4. Conclusions

The findings of this study highlight the efficacy of the proposed method, employing an extension of
ordinary dual numbers featuring a scalar real part and a vector dual part. This novel approach facilitates
the automatic computation of the Jacobian matrix, streamlining the process of differential kinematics
computation in the context of robotic kinematics.

A comprehensive comparison was conducted against well-established methods, namely the geometric,
symbolic, and finite difference methods. Notably, the proposed method exhibited the most favorable
statistics in terms of minimum, maximum, median, and mean computation times, underscoring its efficiency
and the simplified nature of Jacobian matrix calculations.

In evaluating the mean square error (MSE) of the Jacobian matrices, the proposed method, leveraging
extended dual numbers, demonstrated competitive performance when compared to the geometric method.
Although the latter slightly surpassed the dual numbers approach, the essence lies in their comparable
effectiveness.

It is imperative to acknowledge that, despite the advantages offered by the extended dual numbers
method for automated Jacobian matrix calculations, certain limitations were observed in its current
implementation. The methodology was executed within a high-level programming environment like
MATLAB, utilizing Object-Oriented Programming (OOP). It is crucial to recognize that the full potential
of this method may not be fully realized until implemented in a lower-level programming language, thereby
warranting further exploration and optimization.
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