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Abstract: In the dynamic realm of Autonomous Mobile Robots (AMRs), ensuring smooth navigation
among obstacles is critical, especially as they become increasingly integral to industries such as
manufacturing and transportation. Recent advances have introduced several learning models to aid
in obstacle avoidance, but many face computational challenges. This research introduces the Adaptive
Stochastic Gradient Descent with Least Angle Regression (ASGD-LARS) algorithm, specifically designed
to enhance the navigation of AMRs. By carefully considering obstacle orientations, it facilitates quicker
decision-making for direction changes. When compared with well-established algorithms like KNN, XG
Boost, Naive Bayes, and Logistic Regression, ASGD-LARS consistently performs better in terms of
accuracy, computational efficiency, and reliability. This study lays the foundation for the deployment of
smarter and more efficient AMRs across diverse industries.

© 2025 by the authors. Published by Universidad Tecnoldgica de Bolivar under the terms of the Creative Commons Attribution 4.0
License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation,
and DOI. https://doi.org/10.32397/tesea.vol6.n2.602

1. Introduction

In the evolving realm of robotics, navigating cluttered spaces presents both a challenge and an
opportunity for innovation. As industries move towards automation, the need for Autonomous Mobile
Robots (AMRs) that can efficiently navigate diverse environments becomes paramount. This article delves
into these critical facets, providing a holistic perspective on AMR navigation. The ability of AMRs to
traverse cluttered environments is crucial, particularly in industrial and urban settings. These spaces are
often unpredictable, with static and dynamic obstacles that can impede the robot’s path. Understanding
the intricacies of such environments and the complexities they introduce to navigation is fundamental to
improving AMR performance. Beyond mere navigation, the route an AMR takes plays a significant role
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in its efficiency and safety. Intelligent path planning goes beyond conventional navigation, ensuring that
the robot not only reaches its destination but does so in the most optimal manner. This involves assessing
multiple routes, predicting potential challenges, and choosing a path that balances efficiency with safety. At
the heart of effective navigation in cluttered spaces is the robot’s ability to identify and avoid obstacles. This
necessitates a robust algorithm that can quickly process environmental data, identify potential hazards, and
adjust the robot’s path in real-time. The effectiveness of this algorithm directly impacts the AMR’s safety
and efficiency. AMRs stand at the forefront of this discussion, representing a fusion of advanced robotics,
artificial intelligence, and sensor technology. Their autonomous nature requires them to make split-second
decisions, adapt to changing environments, and operate without human intervention. As such, improving
their navigation capabilities in cluttered spaces is of paramount importance. In this paper, we embark on
an in-depth exploration of these topics, introducing the Adaptive Stochastic Gradient Descent with Least
Angle Regression (ASGD-LARS) algorithm and evaluating its performance against established algorithms
such as, as KNN, XG Boost, Naive Bayes, and Logistic Regression in the realm of AMR navigation. The
forthcoming sections will also draw upon existing research and models, underscoring the contributions
and limitations present in the current landscape of AMR navigation and obstacle avoidance. Through a
meticulous exploration of the ASGD-LARS model, this paper endeavors to cast light on potential pathways
toward enhancing AMR navigation, fostering a focus on future research trajectories in this domain.

1.1. Related Works

Navigating cluttered environments using Autonomous Mobile Robots (AMRs) has become a pressing
concern in various sectors, including industry, transportation, and manufacturing. A key challenge in
these spaces is the efficient avoidance of obstacles, especially in diverse structured, unstructured, and
hybrid surroundings. Despite the development of various proficient learning models for this purpose,
many still grapple with computational efficiency issues. Obstacle avoidance has emerged as a pivotal
research area in robotics. This technology underpins a multitude of applications ranging from automation
in industries, such as precise positioning of goods, to surveillance, assisting passengers in airports, and
several service industry operations [1-3]. Modern Al techniques have been employed to enhance trajectory
tracking amidst obstacles, a theme extensively discussed in this paper. Kumar and Parhi [4] pioneered an
Al-infused regression navigational controller designed for the navigation of single and multiple humanoids
in congested spaces. This method leverages the Genetic Algorithm (GA) to pinpoint the controller’s
optimal parameters, ensuring smooth navigation amidst multiple humanoids. However, the use of an
intermediate Advancing Angle (AA) restricts the humanoid’s range. On a similar note, Zafar et al. blended
Grey Wolf Optimization (GWO) with the Artificial Potential Field (APF) to steer mobile robots to their
destination safely [5]. This dual-phase approach first ascertains a Focus Region (FR) devoid of obstacles,
then utilizes GWO algorithm to determine the shortest path by reducing the Artificial Potential Field (APF)
in a cluttered environment. Nonetheless, GWO’s convergence rate was deemed subpar for pinpointing
optimal paths in densely cluttered zones. Sezer introduced the Follow the Gap Method (FGM), which
traces a global plan of successive waypoints [6]. Alongside this, a Look Ahead Distance (LAD) function
optimized tracking and facilitated obstacle avoidance. A limitation, however, was the oversight of obstacle
orientation. Das and Mishra recently postulated a novel Machine Learning algorithm named Adaptive
Stochastic Gradient Descent Linear Regression (ASGDLR). This model guides AMR around obstacles
based on their orientation, demonstrating efficacy across varying AMR speeds and ensuring efficient
obstacle circumvention [7]. Furthermore, Mary et al. outlined an array of sensors that capture real-time
velocity and distance metrics through [oT [8]. In the domain of dynamic obstacle avoidance, Kashyap and
Parhi integrated Regression Analysis (RA), Cell Decomposition (CD), and Whale Optimization Algorithm
(WOA) to compute optimal steering angles in intricate environments [9]. Another noteworthy research
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introduced a dynamic recurrent neuro-fuzzy approach to mobile robot obstacle avoidance, emphasizing
short memory utilization [10]. Both studies signify advancements in dynamic obstacle detection and
avoidance. Path planning is integral to robotics, acting in tandem with obstacle avoidance, especially in
cluttered settings [11]. Recent innovations like Durakli and Nabiyev’s method based on Bezier Curves
[12] and nature-inspired optimization techniques, such as the Reformative Bat Algorithm (RBA) [13],
whale optimization [14], Owl Search Algorithm (OWA) [15], and Particle Swarm Optimization (PSO)
[16], have showcased their potential in mobile robot applications, ensuring efficient path planning with
minimal computational overhead. Table 1 provides a comparative overview of the merits of the proposed
optimization algorithms vis-a-vis existing state-of-the-art methodologies.

Table 1. Comparative Analysis of Path Planning Algorithms for AMRs.

Path Planning Approach Online/Offline  Key Features/Comments
Algorithms
I d A*[17 Search-Based Offli
mprove [17] carei-base e 1. Prunes redundant neighboring nodes.

2. Minimizes memory usage.
3. Evaluates optimal nodes until final path

determination.
DFPA [18 - Onli
18] fHne 1.  Utilizes Voronoi points for prioritizing
nodes.
2.  Extracts obstacle edges for enhanced
avoidance.
APF [19 Potential Field Onli
[19] olentiat e rme 1. Designates a Focus Region for unobstructed
movements.
2. Finds the shortest path by minimizing the
APF value.
GVF [20 - Onli
[20] fne 1.  Tracks target paths amidst unforeseen
disturbances.
2. Accounts for nonholonomic constraints.
3. Features low path error convergence criteria.
NFC [21] Fuzzy-Based Offline . . .
1. Taps into precise navigational control
benefits.
2. Fuses neural networks for decision-making.
ASGDLR [7] Regression-Based Online

1. Employs a fully-trained adaptive algorithm
for optimal decisions.

2. Skillfully avoids obstacles in intricate
settings given sufficient training.

1.2. Contributions to existing research

To address the shortcomings of the previously discussed algorithms, this paper presents the Adaptive
Stochastic Gradient Descent—Least Angle Regression (ASGD-LARS) method. This approach aims to
classify the movements of AMRs into three distinct binary categories. Six datasets, representing low,
medium, and high-speed AMRs, have been leveraged to validate the proposed algorithm, capturing real-time
distances and velocities using three IoT sensors. Key contributions of this paper include:
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i.  While the study in [8] lacked depth in movement categorization, this research distinctly classifies
AMR movements into three binary groups: Left Turn (LT) vs Right Turn (RT), No Turn (NT) vs
Right Turn (RT), and No Turn (NT) vs Left Turn (LT) using the ASGD-LARS model.

ii.  Our algorithm delves into six unique speeds, selecting two pairs from each speed category (low,
medium, and high). LARS method coefficients are continuously updated for each distance segment
covered by the AMR via the Adaptive Stochastic Gradient Descent (SGD) optimization.

iii.  Additionally, the accuracy of the Region of Operating (ROC) curves is demonstrated for all six
speeds to assess the method, creating a real-time clustered environment for its evaluation.

iv.  We have compared the performance of the ASGD-LARS model with established Al algorithms,
including K-Nearest Neighbour (K-NN), XG-Boost, Naive Bayes, and Logistic Regression (LR).
This comparison encompasses the percentage of obstacle avoidance and the representation of all
pertinent ROC curves.

v.  Our approach was subjected to rigorous testing in three diverse clustered settings, where its
efficiency was benchmarked against leading methodologies like A*, VFH, FLC, and ASGDLR in
terms of path lengths and computational duration.

The structure of this paper is organized as follows: Section 2 delves into the essential hardware
requirements. Section 3 elucidates the proposed methodology, followed by problem definition and an
exploration of the mathematical formulations for obstacle avoidance in Section 4. Section 5 provides
insights into two distinct simulation tasks, one involving a single obstacle and the other multiple obstacles.
Section 6 highlights the limitations and future directions of research. Finally, research findings and
conclusions are drawn in Section 7.

2. Hardware Prerequisites

In our research, we employed distance-sensitive Ultrasonic Sensors (US) and velocity-sensitive Infrared
Sensors (IR) strategically placed at the front of the AMR’s chassis. These sensors relay real-time data to the
NodeMCU controller, which in turn modulates the velocities of the AMR’s two wheels based on proximity
to obstacles. Additionally, each wheel of the AMR is equipped with power driver modules (L298N DC
Motor) to ensure optimal power delivery. For stability, a front wheel is positioned at the front end of the
setup.

The IR sensors, situated on the encoder discs, are tasked with gauging the velocity of each wheel. In
contrast, the US sensor, centered on the AMR chassis, measures real-time distances. Signals pertaining to
distance and velocity from these sensors are processed by the NodeMCU controller, which then adjusts the
left and right wheel velocities for effective obstacle avoidance, steering the AMR either to the right or the
left as needed.

Furthermore, our system harnesses Internet of Things (IoT) sensors to transmit real-time data packets
for visualization purposes. A comprehensive depiction of the AMR’s hardware configuration can be
found in Figure 1. A laptop, equipped with Arduino Software, interfaces with the AMR via data transfer
channels. On the AMR chassis, Ultrasonic and Infrared Sensors measure real-time distances and velocities,
respectively. These sensors feed data to the NodeMCU ESP8266 controller, which in turn manages the
AMR’s motion based on obstacle proximity.

Figure 2 explains the schematics for drawing the connections present in the NodeMCU ESP 12E
Controller. In this figure, four terminals of DC motor driver module are connected to four points of the
controller via electronic wires which are further connected to the wheels of AMR.
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Figure 2. Schematic diagram for connections in NodeMCU ESP 12E Controller.

2.1. Experimental Set up

The experiment was designed to rigorously test the performance of the Adaptive Stochastic Gradient
Descent with Least Angle Regression (ASGD-LARS) algorithm in three different cluttered environments.
This setup has allowed for collecting reliable data which ensures that the results are not influenced by
unpredictable environmental variables. The area of 390 x 150 unit has been considered for experimentation
purposes with a 30 x 30 cm grid layout for facilitating positioning and measurement of obstacle avoidance
performance. The layout of the structured grid layout ensures the standardized path planning in different
testing conditions. For each environment, the AMR obstacle avoidance has been carefully designed to
challenge, path planning, and its adaptability. The three different types of the cluttered environments have
been explained below.
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ii.

iii.

Type-1 (large obstacle at 45°Tilt): In this set up, a single large obstacle has been placed at a
45-degree angle. In this configuration, AMR has been configured to detect the obstacle around an
inclined structure where the real-world obstacles like fallen objects or slanted barriers have been
considered. The angle-wise adjustment of the ASGD-LARS algorithm plays an important role
while optimizing the trajectory of AMR. By adjusting its movement dynamically based on the
obstacle’s tilt, the algorithm enabled the AMR to make precise directional changes which ensure
the smoother and more efficient path around the obstacle.

Type-2 (Equidistant obstacles allowing multiple optimal paths): This environment was designed
to test path efficiency, where multiple paths existed for the AMR to navigate. The AMR had to
dynamically select the shortest and safest route using the ASGD-LARS algorithm. Since multiple
pathways were available, the decision-making process relied on the algorithm’s ability to balance
speed, efficiency, and safety. The distance-wise component of the algorithm helped in prioritizing
paths based on real-time sensor feedback, reducing computational load while ensuring efficient
obstacle avoidance. This allowed the AMR to choose the most optimal route with minimal deviation
from the desired trajectory.

Type-3 (Horizontally and Vertically aligned obstacles with two tilted ones): This environment
contains obstacles both horizontally and vertically aligned, with the additional challenge of two
uniquely tilted obstacles. This required the AMR to frequently adjust its path and orientation
while navigating through constrained spaces. The presence of tilted obstacles introduced additional
complexity, demanding a higher level of adaptability from the AMR’s navigation system. The
integration of both angle-wise and distance-wise optimization ensured that the AMR could
efficiently adapt to rapidly changing obstacle configurations. By continuously analyzing the
spatial arrangement of obstacles, the algorithm facilitated real-time adjustments, leading to a more
reliable and effective path-planning strategy. Table 2 explains this environment schema of AMR.

Table 2. Specification of AMR.

S.No. Features Dimensions

1 Length 20 cm

2 Breadth 15cm

3 Ground Clearance 4 cm

4 Wheel Radius 2.5cm

5 Wheel Thickness 1.2 cm

6 Weight 1 Kg

7 Moment of Inertia 0.5 Kg/cm?
8 Battery Voltage 74V

9 Battery Capacity 6000 mAH

—
(=)

Running Capacity 1 hr

3. Proposed Methodology

3.1. Motivation

In recent years, crafting efficient navigational technologies for automated vehicles amidst static

and dynamic obstacles has emerged as a significant hurdle across various sectors, including industrial,
manufacturing, and service industries. The adoption of Artificial Intelligence (Al)-based navigation
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technologies in the automobile sector, addressing distinct challenges, has been particularly prominent. It
plays a vital role in navigating Automated Mobile Robots (AMRs) by making complex decisions regarding
their direction and velocity to adeptly avoid collisions [22]. Globally, car manufacturers like Tesla Motors,
Hyundai, and Google have engineered advanced Al-based navigation systems into their vehicles. These
systems incorporate numerous sophisticated features into Advanced Driving Assistance Systems (ADAS) to
ensure safe trajectory tracking, even when obstacles are present on the road. For instance, Tesla’s Autopilot
software comes integrated with a myriad of collision prevention features to augment vehicle safety, a
strategy also pursued by other manufacturers developing their own collision avoidance systems. These
systems heavily depend on lasers, sensors, and cameras to preemptively detect obstacles, alongside existing
internal technology associated with vehicle navigation. Nevertheless, cars fitted with such systems have
been armed with low-level Al technology, which has occasionally resulted in accidents [23]. To address the
limitations of low-level Al implementations, this research proposes a recent Al-based regression technique,
proficiently enabling the avoidance of any type of static obstacle by leveraging information on distance and
velocity from various sensors.

3.2. Advantages of Angle-Wise over Distance-Wise Approach

The ASGD-LARS algorithm significantly benefits from its angle-wise and distance-wise considerations,
making it superior in real-time navigation and computational efficiency. For angle-wise adjustment, precise
directional changes are enabled based on obstacle alignment. Also, it reduces unnecessary turns and has
been reduced which lead to smoother navigation. The prediction in the trajectory has been improved by
considering relative positions of obstacles. For distance-wise adjustment, adaptive speed control can be
ensured which depends on obstacle proximity. Collision probability has been reduced by making dynamic
real-time adjustments. Computational efficiency has been increased by prioritizing obstacles within the
decision boundary. By integrating both strategies, ASGD-LARS achieves higher obstacle avoidance
accuracy with lower computational overhead which ensure efficient, safe, and adaptive navigation for
AMRs in complex environments.

3.3. Problem Formulation

The Autonomous Mobile Robot (AMR) relies on data procured from infrared (IR) and ultrasonic (US)
sensors for effective collision avoidance. This sensor data informs the robot’s movement, which can be
quantified through the following mathematical expressions:

Yi = f(VLW, D), (1)
Y] = f(VRW, D). 2)

Here, f represents a non-linear function influenced by wheel speed and proximity to obstacles.

The limitation of this approach is that the velocity of the obstacle, i.e., V, = 0, which means that the
difference in the position of the obstacles has been considered as zero. As a result, the environments on
which the proposed approach would work are applicable to static environments only. On the other hand, if
the positions of the obstacles have changed, then V,, # 0, which means that there is a certain velocity of
the obstacles. The proposed approach will be accordingly modified to account for dynamic environments.

Specifically, Yi denotes the output based on the right wheel’s velocity (VRW) and distance (D) to
potential obstructions. Conversely, Y] is determined by the left wheel’s velocity (VLW) and the same
distance (D). We’ve categorized the velocity into three classifications for clarity:

i.  Low speed: 0 to 10 cm/s
ii.  Medium speed: 10.1 to 15 cm/s
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iii.  High speed: 15.1 to 20 cm/s

The term D measures the distance from the furthest detectable obstacle, whereas Dc specifies the
essential distance to that obstacle. Dc1 illustrates the space between the AMR’s decision-making threshold
and the obstacle. Static obstructions have dimensions characterized by Wj (width) and B; (length), where ]
can vary from 1 to P. Positioned centrally on the AMR chassis, the US sensor calculates the Euclidean
distance to any static barrier.

As the robot approaches the vital decision boundary, it either chooses a left or right trajectory. This
decision is influenced by the speed parameters: low, medium, or high. Rightward rotations of the AMR are
represented through angles of 011, 012, 031, Oz, 011, 02 in radians. The opposite, leftward movements,
are signified by —60;1, —0r2, —0p1, —0n2, —0m1, —O0mp in radians. These angles correspond to the six
speed variants, as depicted in Fig. ??.

Mear End

5 == Far End
L o | . .
Starting Point

Figure 3. Mathematical Model for AMR’s collision evasion.

Figure 3 provides a visual representation of the AMR’s collision avoidance model. It highlights the
robot’s varying turn angles at different speeds when faced with an obstruction, emphasizing the integral
roles of speed, angle, and distance in decision-making. For further clarity,

For low speed, i.e., 2.77 cm/s, the angle 677 ranges from:

1[5+ max (05)

f11 ~ tan™ 3
L1 ~ tan D. 3)
For low speed, i.e., 3.77 cm/s, the angle 601, ranges from:
L L
=+ max (0,
O ~tan~! [ 2—— "4 (0.3) )

D.
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For medium speed, i.e., 11 cm/s, the angle 631 ranges from:

L 3L
L 0,3L
Op1 ~ tan ! <2+max( 8)>. 5

D

For medium speed, i.e., 13.5 cm/s, the angle 6y, ranges from:

L 0, L
O ~ tan ! (ﬁmgx(Z) ) (6)
c

For high speed, i.e., 19.4 cm/s, the angle 6y ranges from:

L 5L
L 0, 3%
O ~ tan~ ! <2+max( 8)>. )

D.

For high speed, i.e., 23.8 cm/s, the angle 6y, ranges from:

L 5L

Ly 0, 3L

Birp ~ tan~ (2 m&g( 8 )> . (8)
C

Table 3 offers a breakdown of the mathematical notations used in the ASGD-LARS model, detailing
the speed, angle, values, and distances considered during training.

Table 3. Summary of mathematical notations used for ASGD-LARS model.

Speed Angle Value Distance Covered Angle Value

2

LSl 6 [0°,10°] /D2 + (%) —0;,  [0° 10°]
2

LS2 6,  [10°17°] D2 + (%) 61, [10°,17°]
2

MSI Oy [17°22°] D2 + (%) oy [17°,22°]

MS2 6y [22°30°] /D2 1 2 Oy [22°,30°]

N

HS1 6 [30°, 37°]

)
ot

+

+(

i) 0 [30°,37°]

/
o

N

HS2 Oy [37° 42°] D

)
ol

) O [37°,42°]

3.4. Algorithm Design

The design of the AMR’s navigation system to adeptly maneuver around static obstacles can be broken
down into a sequence of four core stages, as illustrated in Figure 4.

i.  Data Collection and Initial Processing: At the outset, the Ultrasonic Sensor (US) gauges the
distance to static obstructions while the Infrared Sensor (IR) captures wheel velocities. Both sensors,
situated at the forefront of the AMR, are critical for successful navigation. The data harvested from
the US and IRs is then processed using Arduino software. Once processed, it’s stored in the CPU in
a “.dat” file format.
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Wheel Velocity Refinement and Strategy Formation: The NodeMCU Controller, equipped with
the collected data, fine-tunes the wheel velocities using the ASGD-LARS model. As the AMR nears
an obstruction, its navigation strategy is formed by referencing datasets associated with different
wheel speeds: low, medium, and high. This phase wraps up once the robot successfully navigates
past the obstacle.

Trajectory Quantification and Duration Measurement: The next phase focuses on metrics.
It computes the exact path followed by the AMR and the time taken to maneuver around each
obstacle.

Recalibration and Optimal Path Formation: If another obstacle is detected, the AMR recalibrates.
It harnesses fresh data from the US and IRs to plot the most efficient navigation course.

For a deeper understanding of the algorithmic components, Table 4 provides a comprehensive overview

of the mathematical symbols vital to the ASGD-LARS algorithm.

PHASE-2

e e e e e e e e e G G o R E ORI e s e s ek e s e s ks s e s e s e s e s e

CPU
(Central Processing Unit)

NS
NodeMCU
Controller

Controller
Voltage
signals

' and RW Comparator Turn (RT) and No Turn | oint to end
!_ serdnoo (NT) in the movement | point .
of AMR ) | & |
@ E I Applied in
TP 7 I different
ppiiec infow, m ! dense and
medium and high 1 i
speed AMR w | cluttered

: I Calculation of
Arduino 3 Path Traversed Identification
Software
and of another
Stored in ﬂ/ Computational Obstacle
/ Time

Velocity Prediction of
Left and Right Wheel

y

Left Turn (LT) Right

Avoiding the different
types of obstacle
avoidance

1

Navigation of
AMR

T-iSVHd

Calculation of
Optimal Path
from starting

environments

L e e e e e e I TR -

PHASE-4

Figure 4. Outline of different phases of obstacle avoidance and path planning.
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Table 4. Summary of mathematical notations used for ASGD-LARS model.

Symbols Description

4611, £012 Steering angle for low speeds when making left or right turn
+0p11, 02 Steering angle for medium speeds when making left or right turn
+60p1, £0m Steering angle for high speeds when making left or right turn
Viw, VRw Velocity of left and right wheel

Wi(L1), WK(L2) Weights of the intercepts of low speeds

Wi (m1), Wi(pm2) — Weights of the intercepts of medium speeds
Wi(H1), Wk(H2) ~ Weights of the intercepts of high speeds

D, Critical distance from the obstacle

D Distance from the decision boundary from the obstacle

& Measured value of distance vector from the US

S(ak) Total square loss of the measured distances from the observed distances
sign(¢;) Value of the co-relation current step vector

4. Mathematical Approach for Obstacle Avoidance

4.1. Formulation of ASGD-LARS Model

Specific assumptions are established to accurately simulate the proposed algorithm for an AMR, which
are as follows:

ii.

iii.

iv.

Symmetrical Differential Dynamics: The AMR’s differential dynamics are hypothesized to be
symmetrically aligned with the line of sight (LoS) at the midpoint of the chassis. This implies
both the left and right wheels share equivalent rotational speed and power, allowing for a straight
trajectory.

Linear Trajectory: The AMR is postulated to maintain a linear trajectory until encountering a
static obstacle. This suggests a path free from turns or bends, optimizing obstacle detection and
evasion.

Consistent Velocity: The AMR is believed to travel at a consistent speed along a set track, excluding
the possibility of acceleration. This standardization simplifies the processes of obstacle detection
and path strategizing.

Even Terrain: The terrain is considered even, ensuring minimal static friction between the AMR’s
wheels and the ground. This results in a seamless motion, ensuring optimal obstacle detection
without the risk of slippage.

Standard Climatic Conditions: The simulation operates under typical weather conditions, ensuring
consistent algorithm performance in path planning and obstacle evasion.

Least Angle Regression (LARS) is a statistical method for analysing high-dimensional data, developed
by Bradley Efron, Trevor Hastie, lain Johnstone, and Robert Tibshirani [24]. Serving as a resolution to
the least squares challenges associated with a plethora of predictors, the LARS algorithm emphasizes an
equiangular direction between the predictors exhibiting the highest correlation with the response during its
every phase. The pseudo code of LARS algorithm has been shown in the below snippet.
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Algorithm 1 Pseudocode for existing LARS algorithm.

INITIALIZE:
for each j from 1 to N do

<0
engjfor
Set residual 7 <y — X
BEGIN ALGORITHM:
while a predictor exists that is correlated with r do

1. SET x; < predictor most correlated with r

2.DO

Move B; in direction of correlation of x; with r

Set xy <— predictor with highest correlation with current residual
while x;’s correlation with residual # x;’s do

continue updating X
end while
END DO
3. DO
Move jointly in direction defined by x; and x;
Set x; < predictor with highest correlation with current residual
while x;’s correlation # x;j and xy correlation do

continue updating X;
end while
END DO

4. CONTINUE movement in joint direction of x;, xi, and x; until all predictors are in the model

S. REPEAT
for each predictor j do

Compute 7y = smallest correlation value among all predictors
Update B; < B; + 7 - sign(c;)
end for
UNTIL B reaches full least squares solution
end while
END ALGORITHM

This study proposes an augmentation to the conventional LARS methodology by integrating the Bagging
technique. This enhancement seeks to mitigate the model’s prediction variance. Bagging (Bootstrap
Aggregating) is a strategy that involves generating numerous bootstrap samples from the foundational data
and fitting a unique model (in this scenario, the LARS model) to each [25]. The culmination of this process
is an averaged prediction, derived from the collective models. The Bagging with LARS pseudo-code has

been illustrated in the following snippet.

Algorithm 2 Pseudocode for Bagging with LARS algorithm.

INITIALIZE:

DEFINE B (number of bootstrap samples)

DEFINE # (size of each bootstrap sample)

CREATE an empty array predictions_array to store predictions
BEGIN ALGORITHM:

for i FROM 1 TO B do

Draw a bootstrap sample of size n from original data (with replacement)

Fit a LARS model to the bootstrap sample

Store the LARS model predictions on original data in predictions_array
end for

COMPUTE final prediction as the average of predictions in predictions_array

END ALGORITHM
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4.2. Adaptive Stochastic Gradient Descent (ASGD) Optimization

In the LARS regression, the weights corresponding to the coefficients for the low, medium, and high
speeds of both the right and left wheels are dynamically updated after every distance the AMR traverses.
This is achieved through the application of the Adaptive Stochastic Gradient Descent (ASGD) algorithm,
as illustrated in Figure 5.

¥o= | Ve ) — Ve |

XIHDLWL{IJ XJnDRWL{lj Xinﬂ —

Kinowwrzy  Xinorwiiz) Xjno ———

XjnDLWMil} XinORWM{l] Xjnt} +
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Wi, W. , W5 \\Z
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Xinowrzy  Xinowwre) Xjno
I | I |
I | I I
1 E(x)= Xp- Xa

' ' )
Kinww Kivew  Xin ———

/ Stochastic Gradient Descent

(SGD) Algorithm

Figure 5. Updation of the weights of the coefficients of the proposed ASGD-LARS algorithm.

A closer look at Figure 5 reveals that the predictors for both the left and right wheels are determined
after every centimeter the AMR covers. These predictors subsequently serve as input to the adaptive
algorithm. Within this context, XA denotes the computed predictor, which represents the variance between
the predictors of the two wheels. Conversely, XD signifies the intended predictor, equating to the actual
estimated velocities for the left and right wheels. The difference between XD and XA results in E(x), the
error signal for the SGD optimization algorithm.

Iteratively, the coefficient weights of the LARS algorithm are fine-tuned until the desired value is
achieved for each of the six speed categories. The unified weight vector is represented as:

Qn = [XjNLW XjNRW  XjN].

In the dataset employed, there are six distinct speed ranges categorized from low to high. Each of these
speed categories contains 292 observations. The Bagging technique introduces 10 bootstrap samples for
each speed category. Therefore, the dataset comprises 17,520 data points (292 observations X 10 bootstrap
samples x 6 speed categories).

For the purposes of our study, training data is designated as 14,016 data points, which accounts for
eighty percent of the dataset, while the test data is considered as the remaining 3,504 data points. The steps
for the ASGD-LARS method are further detailed in the provided snippet below.
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Algorithm 3 Advanced Stochastic Gradient Descent with Least Angle Regression (ASGD-LARS).

INPUT:

Dataset with 6 distinct speed categories

Each speed category contains 292 observations
Total data points: 17,520

Training data points: 14,016

Testing data points: 3,504

Learning Rate (LR): {;} Y,

Scalar Function: &

PARAMETERS:
[wkill1s [wiil2, Y, &

INITIALIZATION:
C&stll;“unction J(@w) = J([wki]1, [wi]l2)

P =t + - sign(¢;) - Lime[LWRW], pe[LR] Ximp
Set ¥ =0

TRAINING PROCESS:
Partition dataset: 80% training and 20% testing
for each speed category do

Execute ASGD-LARS training procedure (as detailed previously)
Update weights and compute cost
end for

TESTING PROCESS:
for each speed category in the testing set do

Execute ASGD-LARS testing procedure (as detailed previously)
end for

OUTPUT:
Model performance metrics, weights, and predictions

5. Results and Discussion

The Autonomous Mobile Robot (AMR) was tested using the ASGD-LARS algorithm on a NodeMCU
ESP8266 controller. The primary objective was to understand the robot’s capability in navigating
environments with obstructions of varying sizes and undisclosed positions. Python IDE was used for
simulations while MATLAB2022Db software was utilized for executing various path-finding algorithms
in intricate settings. The computer setup seems adequately powerful for such testing. The computer
specifications used for these tests boasted a 16GB RAM, a 1TB hard drive, ran on the Windows 11
Operating System, and was powered by an Intel® Core i7-9th Generation processor with a 2.60 GHz
frequency.

5.1. Case 1: Avoidance of Single Obstacle

The AMR is tasked with avoiding a singular static obstacle as shown in Figure 6. The diagram displays
a safety zone around the obstacle, limited to about 1 cm due to environmental factors like floor friction,
weather, and model uncertainties such as voltage approximations and sensor data inconsistencies.
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Figure 6. Formulation for No Turn Problem.

The data for low, medium, and high-speed conditions is collected, with 80% used for training and 20%
for testing. A Confusion Matrix (CM), as depicted in Table 5, is generated to compute parameters like
Classification Accuracy, Sensitivity, Specificity, and F1-Score.

Table 5. Dataset’s CM.

Value Predicted LT (1) /RT () NT (0)
Value of Actual Scenario

LT (1)/RT (2) True Positive (TP) False Positive (FP)
NT (0) False Negative (FN)  True Negative (TN)

Table 5 illustrates a 2x2 matrix where TP and TN indicate correct classifications, and FN and FP point
to incorrect classifications. Values of higher TP and TN indicate better prediction accuracy. The values
of elements present in the CM reflect the values of CA, SENS, SPEC, PREC, REC, and F1-Score as

represented mathematically as:

TP

SENS = —— (3)
TP + FN
TN
SPEC = — “4)
TN + FP
TP
PREC = ———, (5)
TP 4 FP
_ TP + TN ©
~ TP+FP+FN+ TN’
P-R
F1-score =2 - m. (7)

The values of the different parameters of the CM of the proposed ASGD-LARS algorithm have been
compared with K-Nearest Neighbor (K-NN), Naive Bayes (NB), XG-Boost, and Logistic Regression (LR),
as mentioned in Table 6.

Three performance indices, namely Mean Absolute Error (MAE), Mean Square Error (MSE), and Lars
Coefficient (LC), are used to evaluate the effectiveness of the suggested algorithm, as indicated below.
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Table 6. Values of the CM parameters of all algorithms in different speed cases.

Parameters Speed K-NN XG-Boost Naive Bayes Logistic Regression Proposed ASGD-LARS
Classification 2.77 cm/s  98.64 98.19 98.74 99.65 99.67
Accuracy 98.14 97.74 98.01 99.54 99.53
Sensitivity 99.34 99.17 99.11 100 100
Specificity 99.65 98.56 99.42 100 100
Precision 99.65 98.34 99.42 100 100
Recall 98.12 94.18 95.29 99.54 99.58
F1 score 1.9122 1.8236 1.8473 1.9711 1.9812
Classification 3.77 cm/s  97.72 96.12 96.74 98.97 98.98
Accuracy 97.26 98.34 96.21 98.69 98.72
Sensitivity 97.26 98.34 96.21 98.69 98.72
Specificity 99.65 98.88 99.54 100 100
Precision 99.65 98.12 99.52 100 100
Recall 97.67 97.45 95.29 98.69 98.83
F1 score 1.9342 1.8864 1.8643 1.9546 1.9552
Classification 11 cm/s 96.23 96.16 95.24 97.26 97.37
Accuracy 96.12 95.37 96.12 97.8 96.24
Sensitivity 96.12 95.37 96.12 97.8 96.24
Specificity 92.68 90.74 91.21 95.31 95.35
Precision 96.58 93.56 97.31 98.67 97.37
Recall 96.53 91.51 95.31 97.81 98.12
F1 score 0.9655 0.9712 0.9837 0.9762 0.9842
Classification  13.8 cm/s  94.31 94.12 95.12 96.23 96.34
Accuracy 95.32 93.35 94.52 96.46 96.12
Sensitivity 91.35 90.11 89.31 95.45 94.34
Specificity 97.46 93.77 97.43 98.64 96.78
Precision 95.42 92.26 94.31 96.46 97.77
Recall 95.42 92.26 94.31 96.46 97.77
F1 score 0.9548 0.8781 0.8838 0.9754 0.9635
Classification 16.67 cm/s  92.06 93.74 94.34 94.68 95.35
Accuracy 94.82 91.18 92.15 95.98 97.74
Sensitivity 89.82 87.67 86.42 91.17 93.38
Specificity 95.48 90.75 92.31 97.28 96.67
Precision 91.98 93.37 94.66 95.98 95.28
Recall 90.53 91.51 93.71 98.13 98.12
F1 score 0.9442 0.8772 0.8347 0.9662 0.8912
Classification  19.8 cm/s  90.97 93.74 91.22 94.52 94.67
Accuracy 93.65 91.51 88.32 94.68 95.51
Sensitivity 92.68 91.41 88.82 95.31 95.51
Specificity 96.87 93.12 91.77 98.01 95.51
Precision 92.67 91.87 93.21 97.28 96.67
Recall 91.65 91.53 91.11 96.52 96.68
F1 score 0.9608 0.9169 0.9332 0.9684 0.9612

1 N
MAE = N Z ’ijpr - jmpal|/ (14)
i=1
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N
MSE = % Y (Kimpr — Xjmpal), (15)
i=1
where, Xjmpr, Xjmpal, and N denote the predicted velocity, actual velocity of both wheels, and the total
number of data points respectively.

The effectiveness of an Autonomous Mobile Robot (AMR) in navigating obstacles is evaluated using
performance metrics including Mean Absolute Error (MAE), Mean Square Error (MSE), and the LARS
Coefficient (LC). When the AMR operated at speeds of 2.77 cm/s and 3.77 cm/s, it demonstrates a high
obstacle avoidance percentage, consistently achieving over 98%. However, as the robot’s speed increases,
the coefficients and MAE, MSE values also show a corresponding rise, indicating a higher risk of collisions
at such speeds.

In the testing phase, as the speed increases from 3.77 cm/s to 13.8 cm/s, the LC shows a slight increase,
reaching a value of 0.02. This increment in coefficient values is associated with a decrease in the obstacle
avoidance percentage. At even higher speeds, specifically 16.67 cm/s and 19.4 cm/s, the LARS coefficients
climb further to 0.03. Such increases in coefficients resulted in more pronounced values for MAE and
MSE, underscoring the potential for the AMR to collide with obstacles when operating at high speeds.
To visualize these findings, Figure 7 provides a depiction of obstacle avoidance percentages for different
algorithms across three speed categories: low, medium, and high speeds.

OBSTACLE AVOIDANCE PERCENTAGE

(a)
OBSTACLE AVOIDANCE PERCENTAGE

(b)
OBSTACLE AVOIDANCE PERCENTAGE

19.4 CM

(c)
Figure 7. Obstacle avoidance percentages for all algorithms (a) Low Speed (b) Medium Speed (c) High
Speed.
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In a bid to create a realistic testing environment for the AMR, a 390x150 unit arena is constructed.
Within this arena, a uniform 30 x 30 cm grid is laid out, with static obstacles placed strategically at specific
points. The starting point of the AMR’s route is denoted by a green star, while the end or goal point is
marked by a red star. This setup can be observed in Figure 8, which showcases the AMR detecting distant
obstacles, recognizing decision boundaries at closer proximities, making turns to avoid obstacles, adhering
to designated trajectories, actively navigating around obstacles, and finally reaching the end point.

) ' ® M

Figure 8. Demonstration of the experiment (a) Detection of obstacle at far end (b) Decision boundary at
near end (c) AMR takes turn while avoiding the obstacle (d) AMR follows the trajectory line (¢) AMR
avoids the obstacle (f) Goal point is reached.
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(e) (f) (2) (h)

Figure 9. Simulation graphs for the left and right wheel velocities for testing dataset (a)-(d) low speed
(e)-(h) medium speed.
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W 0] ) O

Figure 10. Simulation graphs for the left and right wheel velocities for testing dataset at high speed.

In addition to the aforementioned tests, wheel velocities of the AMR are also analyzed under varying
speeds. Figures 9 and 10 displays simulation graphs for these velocities. Within these graphs, the green
dots represent the computed values, whereas the continuous red line reflects the predicted data points. The
graph provides insights into the AMR’s wheel velocities at low, medium, and high speeds.

The study assesses algorithms including A*, FLC, VFH, ASGDLR, and the new ASGD-LARS,
examining parameters like Computational Time, Path Length, and AMR Speed. At 2.77 cm/s, A* had a
computational time of 3.04 minutes and covered 505.34 cm. As AMR speed rises, A*’s time decreases
but its path length grows. In contrast, FLC achieves shorter paths (495.65 cm at 2.77 cm/s) with less time
(2.98 minutes). VFH and ASGDLR improve on these, with VFH covering 470.42 cm in 2.83 minutes
and ASGDLR, 461.52 cm in 2.77 minutes. Yet, ASGD-LARS consistently tops the chart, taking 2.72
minutes and covering 452.34 cm at 2.77 cm/s. As AMR speed changes, all algorithms display reduced
computational times, but paths vary in length. ASGD-LARS’s consistent performance highlights the
importance of efficient algorithms in AMR path planning.

5.2. Case 2: Multi-tasking in Environments with Multiple Obstacles

Different experiments are conducted where the behavior of the proposed ASGD-LARS algorithm is
exploited by investigating its performance in avoiding various sizes of obstacles in its path. The performance
of this algorithm is now compared with A*, VFH, FLC, ASGDLR as four conventional path planning
algorithms. Computational time and traversed path are calculated for six distinct speeds of the AMR.
Three cluttered environments are created on the MATLAB 2022a platform according to varying levels of
complexity. In these environments, the AMR identifies the optimal path from start to end. Every square
in the environment spans 30 x 30 cm. These scenarios facilitate the simulation of multiple path planning
algorithms, as depicted in Figure 11.

From Figure 11, static obstacles of four different sizes populate three unique environments. These are set
up to evaluate the proposed ASGD-LARS algorithm against the four traditional methods. Each environment
labels the starting point as SP and the endpoint as EP. In Type-1, obstacles challenge the efficiency of
algorithms, with a notable large obstacle tilted at 45°. Type-2 spaces out obstacles equidistantly, paving
the way for multiple optimal paths. Type-3, on the other hand, arranges obstacles both horizontally and
vertically, supplemented by two uniquely tilted obstacles. All the algorithms undergo 20 simulation runs,
with their average path lengths and computational durations presented in Tables 7 to 9.

Table 7 illustrates the A* algorithm navigating the most extended paths in Type-1 due to interference
from the 3D obstacle. Employing fuzzy rules, the FLC algorithm trims paths by approximately 13% across
all settings. VFH further reduces the journey by around 9.5% owing to diminished oscillations. While the
ASGDLR algorithm curtails path lengths slightly more than VFH, ASGD-LARS stands out. It exploits the
gaps between obstacles and the AMR to achieve the most concise paths with a mean computational time
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Figure 11. Simulation results for FLC, VFH, A*, ASGDLR, ASGD-LARS path planning algorithms on
different clustered environments (a) Type-1 (b) Type-2 (c) Type-3.

of 3.62 minutes. According to Table 8, A* consistently charts the longest routes, notably within Type-3
environments at 13.8 cm/s. ASGDLR further shortens the paths, and ASGD-LARS emerges superior,
producing the briefest path lengths with computational times of 0.83 and 0.79 minutes at 11 and 13 cm/s,
highlighting exceptional obstacle navigation capabilities.

The ASGD-LARS algorithm holds promise for optimizing neural network weights. This research
methodology offers insights for refining neural network weights, amplifying performance across various
use-cases. Its applicability extends to challenging landscapes, narrower pathways, and slower autonomous
systems. Table 9 specifically examines higher AMR speeds (16.67 cm/s and 19.4 cm/s) across the
three environments. Results show that ASGD-LARS persistently outperforms other algorithms in both
computational time and path length, underscoring its effectiveness. Notably, even in denser environments
and higher speeds, the ASGD-LARS algorithm maintains its edge, indicating its promise for real-world
applications and its adaptability for more complex scenarios, including UAVs navigating in 3D spaces.

Table 7. Simulation Results for different path planning algorithms for low speed AMR.

Exp. No. Speed of Cluttered Path Average Average
AMR Environment Planning Computational Path Length
Algorithms Time for 20 Traversed for
runs (min) 20 runs (cm)
31 2.77 Type-1 A* 5.28 877.75
FLC 4.71 783.92
VFH 4.04 672.67
ASGDLR 3.44 573.35
ASGD-LARS 3.07 510.39

Continued on next page
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Table 7 — Continued from previous page

Exp. No. Speed of Cluttered Path Average Average
AMR Environment Planning Computational Path Length
Algorithms Time for 20 Traversed for
runs (min) 20 runs (cm)
A* 5.47 910.23
FLC 4.83 803.64
32 2.77 Type-2 VFH 3.83 637.67
ASGDLR 3.68 612.35
ASGD-LARS 3.52 585.63
A* 5.68 944.26
FLC 4.68 779.39
33 2.77 Type-3 VFH 4.21 700.78
ASGDLR 3.96 658.71
ASGD-LARS 3.67 610.31
A* 3.94 891.78
FLC 341 772.68
34 3.77 Type-1 VFH 291 658.89
ASGDLR 2.69 610.46
ASGD-LARS 2.27 513.54
A* 3.98 901.22
FLC 3.58 810.25
35 3.77 Type-2 VFH 3.19 722.25
ASGDLR 3.01 681.35
ASGD-LARS 2.35 531.93
A* 421 952.38
FLC 3.66 828.54
36 3.77 Type-3 VFH 3.14 710.47
ASGDLR 2.96 671.68
ASGD-LARS 2.64 598.72
A* 3.96 907.16
FLC 3.21 749.32

Table 8. Simulation Results for different path planning algorithms for medium speed AMR.

Exp. No. Speed of Dense Path Average Average
AMR Environment Planning Computational Path Length
Algorithms Time for 20 Traversed for
runs (min) 20 runs (cm)
37 11 Type-1 A* 1.31 870.73
FLC 1.17 775.86

Continued on next page
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Table 8 — Continued from previous page

Exp. No. Speed of Dense Path Average Average
AMR Environment Planning Computational Path Length
Algorithms Time for 20 Traversed for
runs (min) 20 runs (cm)
VFH 1.00 665.84
ASGDLR 0.91 603.31
ASGD-LARS 0.79 524.43
A* 1.39 922.81
FLC 1.25 825.96
38 11 Type-2 VFH 1.07 712.74
ASGDLR 1.01 672.27
ASGD-LARS 0.83 550.72
A* 1.45 957.84
FLC 1.24 822.31
39 11 Type-3 VFH 1.07 710.72
ASGDLR 0.99 659.26
ASGD-LARS 0.89 590.75
A* 1.06 882.61
FLC 0.93 775.88
40 13.8 Type-1 VFH 0.81 670.31
ASGDLR 0.72 603.27
ASGD-LARS 0.63 522.31
A* 1.09 910.31
FLC 0.96 802.78
41 13.8 Type-2 VFH 0.87 725.58
ASGDLR 0.83 691.77
ASGD-LARS 0.71 581.82
A* 1.16 961.89
FLC 1.01 829.74
42 13.8 Type-3 VFH 0.88 733.94
ASGDLR 0.82 680.51
ASGD-LARS 0.75 622.85

Table 9. Simulation Results for different path planning algorithms for high speed AMR.

Exp. No. Speed of Dense Path Average Average
AMR Environment Planning Computational Path Length
Algorithms Time for 20 Traversed for
runs (min) 20 runs (cm)
43 16.67 Type-1 A* 0.88 881.53

Continued on next page
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Table 9 — Continued from previous page

Exp. No. Speed of Dense Path Average Average
AMR Environment Planning Computational Path Length
Algorithms Time for 20 Traversed for
runs (min) 20 runs (cm)
FLC 0.77 770.45
VFH 0.67 671.84
ASGDLR 0.61 610.73
ASGD-LARS 0.53 531.37
A* 0.91 911.95
FLC 0.86 868.46
44 16.67 Type-2 VFH 0.72 722.58
ASGDLR 0.68 681.39
ASGD-LARS 0.54 549.28
A* 0.96 963.42
FLC 0.85 852.68
45 16.67 Type-3 VFH 0.74 746.81
ASGDLR 0.68 683.36
ASGD-LARS 0.61 600.41
A* 0.76 891.59
FLC 0.66 771.27
46 19.4 Type-1 VFH 0.57 673.94
ASGDLR 0.52 612.98
ASGD-LARS 0.43 511.84
A* 0.78 915.68
FLC 0.69 802.78
47 19.4 Type-2 VFH 0.63 733.92
ASGDLR 0.59 690.57
ASGD-LARS 0.51 591.76
A* 0.83 967.72
FLC 0.73 852.36
48 19.4 Type-3 VFH 0.64 752.84
ASGDLR 0.61 701.32
ASGD-LARS 0.56 652.83

23 of 26

The simulation results are significantly improved due to the following key novel contributions of
the ASGD-LARS approach. For Adaptive coefficient update mechanism, ASGD-LARS continuously
refines its decision-making parameters through an adaptive stochastic gradient descent process which
ensures real-time adjustments that improve obstacle avoidance. By incorporating LARS, the algorithm
effectively prioritizes the most relevant features influencing AMR movement which lead to a more efficient
path selection process. The combined angle-wise and distance-wise strategy enhances the robot’s ability
to navigate complex environments by dynamically adjusting steering angles and velocities based on
real-time sensor inputs. The iterative optimization of regression coefficients minimizes processing power
requirements that enable faster decision-making with improved accuracy. ASGD-LARS ensures better
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trajectory prediction with a higher success rate in obstacle avoidance when compared to conventional ML
algorithms such as KNN and Logistic Regression. As a result, there is 12% reduction in computational
time and a 5-10% improvement in obstacle avoidance accuracy in real-world environments. Experimental
results indicate that ASGD-LARS outperforms traditional methods in terms of computational efficiency
and path planning accuracy. The primary benefits of ASGD-LARS include reduced computational load
by updating coefficients dynamically where the algorithm minimizes the processing power required for
real-time path planning. The algorithm can effectively handle different cluttered environments, adjusting
navigation paths accordingly. Optimized path planning reduces unnecessary movements which leads to
more efficient battery usage in AMRs.

6. Limitations and Future Directions

The ASGD-LARS approach has a significant improvement over conventional methods by combining
stochastic gradient descent with least angle regression for avoiding obstacles in real time. Unlike
conventional methods such as Genetic Algorithm (GA), Grey Wolf Optimization (GWO), and Artificial
Potential Field (APF), the proposed approach dynamically updates its regression coefficients to optimize
the robot’s path efficiently. Another key novelty of ASGD-LARS is its ability to adaptively fine-tune
the decision-making process by considering both obstacle distance and orientation. Experimental results
indicate that ASGD-LARS outperforms traditional methods in terms of computational efficiency and
path planning accuracy. The primary benefits of ASGD-LARS include reduced computational load by
achieving 5-10% higher accuracy than conventional ML-based models in avoiding obstacles. The algorithm
can effectively handle different cluttered environments, adjusting navigation paths accordingly. While
ASGD-LARS demonstrates superior performance in cluttered environments, further advancements can be
explored.

For the future directions, the proposed approach can be refined to more dynamic environments by
changing the position of the obstacles which is defined in the Eqn. 1 and 2 where the velocity of the obstacle
has been considered as 0. As a result, new equations will be framed which hold good in the changing
environments. The modified algorithm could be tested in the different scenarios while considering the
moving obstacles in front of AMR. Also, the proposed model could be extended on 3 dimensional aerial
autonomous systems which have number of moving obstacles at large.

7. Conclusions

In this study, we present a newly formulated ML model, ASGD-LARS, designed to guide AMR through
single and multiple obstacles across three dense environments. We assessed the model’s efficacy using
Mean Absolute Error (MAE), Mean Square Error (MSE), and Lars Coefficient (LC), with the outcomes
being promising. Moreover, we update the LARS coefficients using the ASGD optimization method,
effectively predicting the probabilities for both wheels. Relative to other established ML algorithms, our
model demonstrates enhanced performance. Simulations indicate that our model suggests an optimal path
for the AMR, requiring the least distance and time, especially when compared with other leading algorithms
like A*, FLC, VFH, and ASGDLR under various speed conditions.
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