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Abstract: Improving Motor Imagery (MI) results in amplified event-related
Desynchronization/Synchoronization (ERD/ERS), which is crucial for MI-based Brain-Computer
Interface (BCIs) and neuromotor rehabilitation. Several attempts to enhance MI by providing visual
guidance have been reported, however, this can be improved by using robotic systems for Kinesthetic MI
(KMI), such as robotic gloves for hand movements. In this study, a novel protocol based on KMI tasks is
proposed to analyze cortical rhythms against a standard MI protocol based on static Action Observation
(AO). The results allow concluding that the use of the robotic gloves increases the ERDs by 3% during MI
tasks, where neuromodulations were found to be more focused on the C3 and C4 electrodes during right-
and left-hand closing MI, respectively, compared to opening. In conclusion, the proposed strategy based
on passive movement is feasible and can enhance MI, which can be used for designing most robust BCIs.
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1. Introduction

Brain Computer Interfaces have gained importance in rehabilitation interventions in recent years
as they allow the interaction of robotic devices and humans using brain information, usually through
electroencephalography (EEG) [1–3]. For instance, the use of exoskeleton-based BCIs [4, 5] or
Electrostimulators [6] have been reported for the rehabilitation of post-stroke individuals.

In this context, robotic gloves for rehabilitation have been of interest in combination with BCIs because it
is possible to perform control actions with brain signals in lightweight devices (soft-robotics) and wearable
for the subject, which allows greater comfort during task assistance [7, 8]. However, it is challenging to
interpret subject intentions through EEG because these signals have a low Signal-to-Noise Ratio (SNR),
are not stationary, and may often be in the presence of physiological or non-physiological artifacts [9, 10].
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Mental training tasks using Motor Imagery (MI) have been used to detect individual intentions in
BCIs [11]. MI is a specific brain activity technique that occurs when a subject imagines movements
or actions without performing them physically [12, 13]. Previous studies have reported that during
MI tasks a decrease in power is observed with respect to the rest phase on Mu (µ) band (termed
Event-Related Desynchronization-ERD) or an increase in power in the Beta (β) band (termed Event
Related Synchronization-ERS) [11, 14]. In this context, the literature has focused on the MI recognition of
hand movements, such as opening and closing. However, considering that this mental task is focused on
the same limb, task recognition becomes more challenging, considering that cortical rhythms are similar
[15, 16].

Several authors have attempted to address this issue using visual and sensorial stimulation, which
are known as Visual Motor Imagery (VMI) and Kinesthetic Motor Imagery (KMI), respectively, [17].
Furthermore, complex computational techniques, such as Machine Learning or Deep Learning, have been
used for detection [18, 19]. For instance, Alazrai et al. used neural networks to identify cortical rhythms of
hand MI based on opening, closing, and resting [18], whereas Takalovan et al. implemented a protocol for
identifying resting, grasping, and elbow movement MI tasks [19]. Despite significant advances in MI of
the same limb, it should be noted that during the scanning of cortical rhythms, some electrodes may not
demonstrate power differences, making task identification difficult. In this context, a hypothesis arises as to
whether it is possible to discriminate brain rhythms during MI tasks of the same limb using other types of
stimulation, such as passive motion with KMI, which is little known in the literature.

This study proposes a novel protocol to analyze the cortical rhythms of hand opening and closing MI
tasks under two conditions: the first corresponds to visual cues based on Action Observation (AO) for VMI
[20, 21], and the second corresponds to AO cues together with passive movement generated by a robotic
glove (KMI), both right and left hand. Subsequently, changes in power with respect to the resting phase
were found and compared, especially in the parieto-central brain cortex, where the hand motor function is
more measurable [14].

This paper is divided into four sections. Section 1 provides a brief introduction to the context of this
study. Section 2 describes the experimental design and methods used to calculate ERD/ERS. Section 3
presents the results and discusses the phenomena related to the cortical rhythms obtained in this study by
comparison with the literature. Finally, Section 4 presents the conclusions and future work.

2. Methods and Materials

2.1. EEG acquisition

EEG signals were acquired using an OpenBCI board with 16 channels located on the brain cortex region
by using the 10-20 international system for electrode positioning, considering the region where upper-limb
MI is more discriminant: FP1, FP2, F3, F4, FC4, FC3, FCz, CP3, CP4, C1, C2, C3, C4, C5, C6, and
CPz (see Figure 1) [15]. A1 and A2 are used as reference electrodes and are located on the earlobes. The
EEG was acquired at a sampling frequency of 125 Hz. A GUI was developed in OpenViBE software
(Inria, FR), which is compatible with Python and displays the visual stimulus indicating the MI task. This
platform was synchronized with the robotic glove to generate the protocol sequences. The stimuli are
displayed on a 15.6-inch computer screen, 60 cm away from the participants. More information about this
scheme is available in [9].

2.2. Experimental setup

Two experimental designs were validated by focusing on the same limb MI tasks performed with and
without the passive assistance produced by a glove. The assistive glove used here is a pneumatic robotic
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Figure 1. Location of the 16 electrodes following the 10-20 international system.

glove (Model ML-115A from Gendoing, CN), powered by 5 V/2 A, with a pressure range from -58 kPa
to 120 kPa. An electronic circuit was built, which was based on a generic 6V solenoid valve, a voltage
source, and a microcontroller board Arduino Mega 2560 (Arduino, IT). This circuit is in charge of inflating
the glove pneumatic bags, and opening the glove, according to the protocol. In addition, each of the
protocols was validated using two conditions for the respective MI task: right and left robotic gloves. The
experimental protocol consisted of the following steps (see Figure 2):

1. A black screen was presented where the subject did not perform MI tasks (baseline), but executed
passive movements.

2. An image with an open hand is displayed on the screen where the subject is instructed to imagine the
same movement.

3. An image with a close hand is displayed on the screen where the subject is instructed to imagine the
same movement.

4. Repeat 8 times the steps 2-3.

Figure 2. Visual stimuli presented in the experimental protocols for hand MI.
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The experiment was repeated once more to obtain information from two sessions. Subsequently,
considering the experimental setup presented in Figure 2, a protocol was executed considering passive
assistance by the robotic glove. It is worth mentioning that passive assistance is synchronized with image
presentation with the objective of inducing KMI and VMI. The glove involved in inducing the passive
movement is shown in Figure 3.

Figure 3. Experimental setup for EEG-based MI collection with the left robotic glove for passive
movement.

2.2.1. Participants

The tests were conducted in a controlled environment to minimize noise and external interference.
The protocols were executed by two female subjects (age between 25-40 YO), where a right handed
subject used the right glove, and another left handed individual executed the protocol by using a left glove.
Additionally, these subjects had similar physical characteristics, with no neurological characteristics,
for comparison of the results. The protocols were executed according to the ethical requirements
approved by the Ethics Committee of the Federal University of Espírito Santo (UFES) in Brazil (number
CAAE:39410614.6.0000.5060).

2.3. Signal pre-processing

The dataset was segmented by considering the time windows related to the duration of each task
(baseline, closed-hand MI, and open-hand MI). Subsequently, to reduce the common noise, a Common
Average Reference (CAR) filter was applied to all electrodes. Following, considering the frequency bands
where the MI are more discriminated, the signals were filtered with a 4-order zero-phase band pass filter
between 8 and 30 Hz ( Mu-µ and Beta-β bands) to perform the data analysis.

2.4. Features based on Power Spectral Density

To identify the differences between the cortical rhythms produced by the glove implementation for
passive movement, the frequency-domain information of the EEG signal was calculated. The Power
Spectral Density (PSD) was computed specifically in the (µ) and (β) frequency bands for each state:
baseline, closed-hand MI, and open-hand MI, using Equation 1.
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PSD =
N

∑
n=1

(P(X[n]))2, (1)

where PSD corresponds to the signal PSD, and P(X[n]) is the spectral information of the signal between
the bands of interest. Subsequently, Equation 2 is used to calculate the ERD/ERS percentage.

ERD/ERS =
(PMI − PB)

PB
, (2)

where PMI is the signal power calculated during MI tasks (hand opening or closing), and PB is the signal
power at the baseline. It is important to note that ERD or ERS depends on the value obtained from Equation
2 of the MI power with respect to that of the baseline. Thus, if the value decreases, it would correspond to
ERD, whereas ERS would be reported if the value increases.

3. Results and Discussion

Initially, two MI task protocols, with and without the use of a glove, either left or right, were proposed.
Figure 4 shows the spatial distribution of ERD/ERS averaged for all trials in different situations in the
frequency bands of interest. In Figure 4a, it is possible to observe the presence of ERD at electrode
C3 during left-hand MI performance (ipsilateral section). Although the literature reports that the most
influential channel during left-handed MI is the C4 channel, this phenomenon may be associated with the
lack of concentration of the subject and difficulty of task execution with the same limbs. However, Figure
4b shows an ERD in all frequency bands over the C4 channel, which is in agreement with the results of
previous studies [11, 15]. Subsequently, the difference in the influence of the glove during left-handed MI
is presented in Figure 4c, where it can be observed that the channels that report the greatest power changes
are associated with the right brain region, for both hand closure and opening.

Regarding the MI tasks associated with the right hand, Figure 4d shows the spatial distribution of power
for the protocol without using the glove, which does not represent ERD with any specific pattern. In
contrast, in Figure 4e, it is possible to observe the presence of an ERD over electrode C3 in the µ band
during the closing and opening tasks. This difference in electrode C3 is more evident in Figure 4f for all
the frequency bands. This result is in agreement with previous studies because the left region presents
power changes in tasks performed with the right hand (contralateral section) [11]. It is worth noting that
the baseline implemented passive movement, but without mental tasks.
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(a) Left-hand (without glove) (b) Left-hand (with glove) (c) Left-hand difference

(d) Right-hand (without glove) (e) Right-hand (with glove) (f) Right-hand difference
Figure 4. Grand averaged ERD/ERS for each MI task on interest frequency bands. (a) Comparison
of ERD/ERS during left-hand MI tasks in the protocol without passive assistance. (b) Comparison of
ERD/ERS during left-hand MI tasks in the protocol using the robotic glove for passive assistance. (c)
Difference between ERD/ERS of the experimental design for left-hand with and without passive assistance.
(d) Comparison of ERD/ERS during right-hand MI tasks in the protocol without passive assistance. (e)
Comparison of ERD/ERS during right-hand MI tasks in the protocol using the robotic glove for passive
assistance. (f) Difference between ERD/ERS of the experimental design for right-hand with and without
passive assistance.

Subsequently, considering the above results and the importance of the C3 and C4 electrodes during the
performance of the right and left upper limb MI tasks, the average ERD/ERS was compared in a more
specific manner, as shown in Figure 5. In this Figure, it can be seen that there is an average difference of
approximately 2% and 3% in the µ band between the left and right gloves. These findings are in accordance
with the spatial power distributions indicated in Figure 4c and 4f, where it is possible to see that the ERD
is more evident for hand closing tasks than for opening. This may be due to the fact that the anatomical
position of the hand during opening tasks is related to resting tasks, while closing may be more pronounced
by the robotic glove actuators [22].

Based on these results, it was possible to detect a higher ERD during the execution of MI tasks using
robotic glove assistance for both the left- and right-hand movements. The implementation of robotic
devices during passive movement may improve the cortical rhythms behavior, which is in accordance with
previous studies presented in the literature, where Delisle-Rodriguez et al. demonstrated that these type
of movements activated by BCIs during MI tasks [23], could improve the identification of mental tasks.
On the other hand, Cheng et al. reported that the use of a robotic glove with virtual reality and visual
feedback could have a positive impact for the rehabilitation of people with stroke [7]. The aforementioned
studies reported that the assisting limb movements assisted involved in the MI tasks can increase sensory
stimulation in the cerebral cortex, where cortical rhythms are produced owing to the presentation of KMI.
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(a) (b)
Figure 5. Comparison of ERD/ERS on C3 and C4 electrodes in Mu band for both protocols during hand
MI of (a) Left hand; (b) Right hand.

Nevertheless, these studies did not report the differences or advantages of using robotic assisted movement
over standard paradigms.

In this context, the use of robotic devices to assist movements may make it easier for subjects to imagine
movements [7,24], which is in accordance with the deeper ERD found in this study during the execution of
the protocol using the robotic glove. In addition, this type of experimental design can help differentiate
between MI tasks performed with the same limb, such as complex hand movements [25]. The difficulty in
discriminating hand complex tasks, such as closing and opening, corresponds to the power changes in EEG
rhythms that are presented on the same contralateral side of the brain. Additionally, other studies reported
that the execution of multiple tasks performed on the same limb can provoke deeper ERDs [16]. For
example, Guerrero-Mendez et al. implemented a study on grasping VMI with AO, where it was possible to
find significant ERD/ERS in the pariero-central cortex, which allowed concluding promising approaches
for visual stimulation during MI tasks [20]. However, that study did not combine VMI with KMI, which
could limit the evocation of cortical rhythms. In this context, a study performed by Song et al. showed that
the use of visuo-tactile stimulation can improve ERDs to a percentage level that is very close to those of
real movements [26]. Nevertheless, the aforementioned study did not implement KMI with a robotic glove.

Assisted movement could help in the generation of KMI because the subject is able to perceive sensorial
feedback during the development of hand MI tasks, which may induce more profound ERD/ERS when
using this type of device [16]. The results of this study are in line with the literature, where it was possible
to evidence ERD/ERS related to KMI tasks. Studies in the literature have gathered efforts to increase the
magnitude of these metrics using different strategies such as haptic or visual feedback, obtaining ERD/ERS
changes with mean absolute values between 10% and 50% [5,27]. In this context, our preliminary analyses
may be limited by the use of only two healthy participants, where further evidence with a larger sample is
required to obtain more generalized conclusions. Finally, the use of these strategies based on the execution
of protocols using assistive devices can potentially be applied to study the EEG rhythms of more complex
mental tasks, which would be interesting for the scientific community because it would be possible to
develop more controllable, usable, and effective rehabilitation devices for the intervention of people with
disabilities during the execution of activities of daily living [16].

However, the literature reports that there are still limitations in BCI-controlled robotic devices for
generating interaction in an accurate manner using MI [28]. In addition, several patients experienced
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discomfort during the use of massive robotic setups to perform therapeutic exercises [29], which decreased
motivation and affected movement recovery performance. Therefore, the implementation of the robotic
glove in this study plays an important role, where it is worth noting that the weight of the actuators is
negligible, offering better comfort and wearability to the patient.

On the other hand, the study of EEG signals during MI tasks is still of difficulty, because such signals
can be influenced by physiological and non-physiological factors, which can affect the performance of BCI
systems [10]. Therefore, the study of EEG rhythms in complex MI tasks using device-assisted movements
is a promising strategy to address the artifacts on BCIs, leaving the door open to the execution of new
studies on cortical rhythm changes when performing MI tasks from the same limb [22].

One of the limitations of this study was the number of participants. Nevertheless, it is important to
mention that the persons who implemented the protocol showed a cortical difference produced by the glove
of approximately 3%, specifically in the µ band in both the right and left gloves, more evident during
hand closing, which are promising results. Therefore, it is recommended to expand the study for a larger
population sample.

4. Conclusions

The objective of this study was to analyze brain cortical rhythms during the execution of left- and
right-hand opening and closing of MI tasks. The results of this study indicate that the ERD in µ band
during the combination of AO and passive movements generated by a robotic glove is more profound than
the execution of this type of task without sensory stimulation. This cortical response was mostly detected
in electrodes C3 and C4, which are related to the right- and left-hand movements, respectively. Considering
this ERD comparison, it is possible to highlight the benefits of passive assistance during MI, generating
more focused neuromodulations in the cortical cortex close to 3%. However, it was possible to find more
evident power changes during MI tasks related to hand closure compared to the open hand, which may be
influenced by the complexity of the task.

The findings of this study contribute to the field of BCIs due to the cortical effects of the use of robotic
gloves during MI tasks, whose strategies can be used for the incorporation of more robust systems for
therapeutic interventions for people with neuromotor impairments, such as post-stroke populations. Future
studies should focus on the design and validation of an upper limb-based BCI using different feedback
strategies to induce neuroplasticity based on previous analyses. Finally, the recruitment of a larger sample
will be considered to better generalize our system.
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