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Abstract: The Leakage Inductance and Series Capacitance (LLSC) resonant converters are exhaustively
employed in a wide assortment of industries involving consumer electronics due to their benefits of
good efficiency, higher power density, immunity to electromagnetic interference, low EMI and harmonic
distortion, wide production extends, voltage stress is lowered and frequency at high operating characteristic.
Three of the most prominent converters with LLSC topologies are explored along with thorough analyses
of their merits and disadvantages. The background of LLSC resonant converters are also discussed. A
significant amount of research is also being done regarding large - scale production of LLSC resonant
converters, namely in order to charge electric automobiles (EVs), solar systems, LED lighting drivers, and
power supply for LCD TVs. Eventually, the growth of LLSC resonant converter is explained.
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LED Light Emitting Diodes
LLSCRC LLSC Resonant Converter
SMPS Switch Mode Power Supplies
ICS Integrated Circuits
ZVS Zero Voltage Switching
ZCS Zero Current Switching
LCD Liquid Crystal Display
PFM Pulse Frequency Modulation
EMC Electromagnetic Compatibility
TL − LLSCRC Three Level LLSC RC
PFC Power Factor Correction
OBC On-Board Controller
BI − OBC Bidirectional OBC
BI − LLSCRC Bidirectional LLSC RC
PVCell Photo Voltaic Cell
PQ Power Quality
MPPT Maximum Power Point Tracking
TV Television
DC Direct Current
AC Alternating Current
SiCdevices Silicon Carbide devices
GaNdevices Galliun Nitrade Devices

1. Introduction

The first time the LLSC resonant converter (LLSC RC) construction was made was in 1988 [1], but
for a very long time it has not been in the spotlight and has not been employed substantially in real world
applications owing to its challenging simulation analysis and sophisticated operation. The basic LLSC RC
configuration showing all parts is depicted in Figure 1.

Switch mode power supplies (SMPS) were created to function at specific frequencies in relation to
the current need for high power density, which is expected at the devices used in Power Electronic circuit
development [2, 3]. High-frequency, though, explains severe electromagnetic interference (EMI) pollution

Figure 1. LLSC RC configuration showing all parts.
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Figure 2. The LLSC resonant converter’s benefits.

and switching energy usage [4, 5]. As a result, during the past ten years, scholars from all over the world
are being curious on converter topologies with a easy on-off switching functionality and at large working
frequency characteristic [6]. The benefits of old resonant converters and forms LLSC resonant converter,
and positives are such as DC isolation, steady no-load performance, reduced capacitor filter current ripple
needs modification of resonant current as load, and improvements in the voltage modulation and easy on
– off switching cycle range. As a result, academics have started undertaking in-depth study on it. LLSC
resonant converters have developed and are currently used in a variety of industrial applications as a result
of extensive resonant converter research and the development of many controls integrated circuits (ICs).

Two switches with opposite duty ratios of 0.5, along with the body diodes and parasitic capacitors, make
up the square-wave generator. A high-frequency transformer, a resonant inductor Lr, a magnetising inductor
Lm, and a resonant capacitor Cr make up the resonant network. A capacitor filter, two to four diodes, and a
transistor are the standard components of a rectifier network [7]. The LLSC resonant converter, as depicted
in Figure 2, parasite parameters could indeed attain ZVS turn-on, secondary winding diodes uses ZCS for
turn-off, electrical disconnection from the electric grid, without the use of any additional components. As a
result, it may be used for various loading scenarios and lower the size and complexity of the utility grid. It
can also increase the converter’s overall efficiency and stop the load from negatively impacting the power
grid.

Since more than ten years ago, applications based on LLSC resonant converters have developed swiftly
due to the advantages indicated above. Examples include a laptop adapter [8, 9], a power supply for LCD
TVs [10, 11], a driver for LED lights [12], a battery charger [13], and an EV charging station [14–16].
LLSC RC primary features are Electrical isolation, high energy density, and easy and comfortable switching
operations [17, 18], all of which increase product efficiency and safety which reduces harmonic pollution
and EMI and increasing final weight of system.

The benefits of the LLSC resonant converter [19, 20] will be discussed in this paper, along with an
examination of its core ideas. Additionally, this article analyses the various topologies of typical LLSC RC,
offers a brief description on actual uses of LLSC RC across a range of industries, and predicts the future
course of LLSC resonant converter development [21, 22].
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Figure 3. ZVS condition of S1 operation modes.

2. Benefits of the LLSC RC

Without the use of auxiliary circuits or unique control techniques, the LLSC resonant converters can
perform a number of favourable functions, which are listed in more detail below.

2.1. Switching on ZVS

If the LLSC RC runs in the inductive zone, the resonant current lags the voltage at the input port. As a
result, if changes are made in switching state, the current at LLSC RC never abruptly changes and instead
keeps moving in the original direction. Therefore, as shown in Figure 3 [22], the parasitic capacitors at the
ends of the switches will allow the resonant current to discharge one of them (CS1) and charge the other
one. (CS2). The body diode (such as DS1) is switched on when the symbiotic capacitor is fully depleted.
When switch S1 is turned on with the resonant current lowered to zero, the voltages and switching current
do not match; hence no active power is produced. Soft switching is done with the least amount of switching
losses possible [23, 24].

2.2. Switching on ZVS

The ZCS is made possible by the magnetising inductor of the transformer regularly taking part in
the resonance. The output voltage across the diode, as illustrated in Figure 4, restricts the magnetising
inductor while it is not a part of the resonance; but, when it is, the current at the LLSC RC passes into
both the magnetising inductor and transformer primary end. As a result, the diode turns on and sends
energy starts at the grid source to the load. When the current at LLSC RC equals power flow through
the magnetising inductor, the reverse voltage shuts off the diode rectifier on the secondary winding. As a
result, the transformer’s main side is no longer sending any current, which means the main side is also no
longer transmitting any current. ZCS increases the stability and effectiveness of the LLSC [25,26] resonant
converter while protecting the switching parts.

2.3. High competence

ZVS and ZCS can be achieved using the LLSC resonant converter with a minimum of switching losses
and no diode reverse recovery. As a result, all switching component losses are decreased, increasing the
converter’s overall efficiency.
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Figure 4. Modes of operation for the ZCS condition.

2.4. Resonant Inductor and its Magnetic Combination Concept

The leaky inductor is completely utilised in the LLSC resonant converter since the magnetising and
resonant inductors are merged frequency at transformer, depicted in Figure 5 [23]. This produces a reduced
overall converter size, a higher energy density, as well as immunity to electromagnetic interference and
voltage conversion [27–29].

2.5. High Energy Density

The transformer volume can be decreased by using a high on and off cycles of switches. The magnetising
and resonant inductors are also part of the transformer, which helps the LLSC resonant converter attain a
high-power density.

2.6. Electrical remoteness

The LLSC RC detaches the load from the excitation by using the high-frequency transformer. The load
cannot harm the electrical grid; hence the grid is not harmed.

Figure 5. Resonant inductor, magnetising inductor, and transformer magnetic integration.
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2.7. Output at a wider extent

The LLSC resonant converter can modify the impedance of the resonant parts and change the gain in
order to manage the output in accordance with its gain expression by manipulating the pulse frequency
modulation (PFM) of the switching frequency [20, 30, 31] as

G(s)LLC =
8n2

π2 R0//sLm
1

sCr
+ sLr +

8n2

π2 R0//sLm
(1)

where n is the transformer’s turns ratio; R0 is the load, Cr is the value of the resonant capacitor, Lr is the
value of the resonant inductor, and Lm is the value of the magnetising inductor.

This allows the LLSC resonant converter to operate under a variety of loading conditions. The LLSC
resonant converter [32, 33] may still react by changing the output potential or current at output via PFM
management to provide operational stability and if load varies fast or the voltage supply encounters a
specific malfunction.

2.8. Minimal EMI and harmonic pollution

Due to its nearly sinusoidal resonant current waveform and the elimination of potential and surges
at current on the diode rectifier, the LLSC RC has low harmonic pollution and strong electromagnetic
compatibility (EMC) [34, 35].

2.9. Low voltage restraint

On the secondary side of the transformer, the magnetising inductor serves as a filter, obviating the
requirement for an inductor filter and lowering the voltage restraint on the diode rectifier.

3. Three well-liked LLSC resonant topologies utilised in commercial applications.

The three-level (TL) LLSC RC, the full-bridge LLSC RC, and the half-bridge LLSC RC are the three
basic LLSC resonant converter designs employed in industrial applications [35, 36].

3.1. LLSC RC half bridge configuration

The LLSC RC half bridge configuration is made up of two switches, resonant elements, two diodes, and
an outlet capacitor, as shown in Figure 6. Only under situations of high input voltage, low input current, low
output voltage, and high output current is the half-bridge LLSC resonant converter ever used. Applications
include Remote heat exchangers, communication and computer supplies, battery chargers, and LCD TV
power supplies are a few products that use this architecture [37–39].

The half-bridge LLSC RC has the following benefits and drawbacks in comparison to other LLSC
resonant converter configurations.

Benefits

1. The primary side of the transformer’s current flows in continuously, ensuring that the magnetic core is
fully utilised, and that magnetic bias is prevented.

2. The transformer’s primary side experiences less voltage stress.
3. The components are inexpensive and the structure is straightforward [40–42].
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Figure 6. The half-bridge LLSC resonant converter topology.

Drawbacks

1. Due to the doubled current stress via the full-bridge LLSC resonant converter compared to the
switches and transformer’s primary side, the bridge capacitors will suffer large losses.

2. The transformer’s secondary side has large current ripples that could lead to potential oscillations and
spikes.

3. A wider switching frequency range is required by a large input voltage range. The converter system
may be impacted by the anticipated high input since it will result in an severe on - off frequency and
increase the negative impacts of the symbiotic parameters [43, 44]

3.2. LLSC RC in full bridge topology

The full-bridge LLSC RC is composed of resonant components, four switches, an output voltage at
capacitor, two diodes, and is seen in Figure 7. It is best suited for high and medium power transfers. This
architecture is frequently used in induction heating systems, solar power equipment, battery packs, welding
operations, and power supplies for X-ray equipment[45].

The full-bridge LLSC resonant converter has the following benefits and drawbacks in comparison to
other LLSC resonant converters.

Figure 7. The topology of the full-bridge LLSC resonant converter.
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Benefits

1. The converter’s consistent current at input and low ripple at current can reduce pollution due to EMI
and improve dependability.

2. This sort of converter is best suited for medium to high settings since the switches are less responsive
to voltage and current shocks [46, 47].

Drawbacks

1. Complex design is required because of the sophisticated topological structure and auxiliary circuits.
2. The cost of the switch components is rather expensive because four switching drivers are required.
3. The substantial current ripple on the voltage peaks and oscillations could be caused by the

transformer’s secondary side [48–50].

3.2.1. Differences between Half Bridge and Full Bridge Resonant Converters

Table 1. Differences between FB-LLSC and HB-LLSC

S.No. Full Bridge Resonant Converter Half Bridge Resonant Converter

1 These produce a square wave along with no DC offset These give back a square wave.
2 The output amplitude is equal to the input voltage (Vin) The output is half of the input voltage (Vin/2)
3 It reduces the current stress It creates more stress on the Capacitor
4 Heat Dissipation will be less. It prevents body diode reverse recovery

3.3. TL-LLSC RC

The TL-LLSC RC is made up of four switches, resonant elements, four switches, and three capacitors,
depicted in Figure 8. Use the TL-LLSC RC only for creating high power, wide output range systems. The
architectural approach is usually used for EV inputs [51, 52].

Figure 8. The design of TL-LLSC RC.
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These are the benefits and drawbacks of the TL-LLSC in compared to other LLSC resonant converters:

Benefits

1. It is best for usage in improved power situations and employed in lowering the on off switching cycles
range because the voltage stress on the switches is decreased to half of the input voltage [53–55].

2. There are low harmonics in the output voltage.

Drawbacks

1. Complex initial effort is required when creating designs for the 4 idle times.
2. The TL-LLSC RC structure requires for four switches and four diodes, which increases the complexity

of the converter [56, 57].
3. A significant voltage gain is needed to provide a stable voltage at the output end from a low potential

input. However, it can only effectively address the trouble of input instability in a limited range due
to the lesser efficiency at low input potential and high resonant element stress [58–60].

4. Industries that use LLSC RC

LLSC RC are often employed PV, power supplies for LCD TV, and other key goods because of their
beneficial design and features including electrical isolation, gentle switching, greater energy density, and
the potential for larger frequency operation.

4.1. LED light driver LLSC RC

Excellent LED lighting has been lauded as the most trusted lighting choice due to its adaptability and
range of uses because of its reduced size, high illuminating life, reduced power losses, and environmental
friendliness [61–63]. Uncontrollable rectifier bridge-based LED drivers do, however, suffer from a number
of shortcomings that result in energy waste, EMI, and harmonic pollution [64–67]. Designing an LED
driver with broad adjustability, high durability, and reduced power losses is therefore essential. The LED
driver, a crucial component of LED lighting equipment, must also be portable, have a high power density,
be economical to manufacture, and have outstanding electromagnetic compatibility. As a result, LLSC
resonant converters are frequently used in LED driving devices [68–71]. A two-stage system that lowers
EMI and harmonic pollution while simultaneously raising power factor is commonly provided by coupling
the LLSC resonant converter to a Boost power factor correction (PFC) converter above it [58, 72, 73].
Figures 9 and 10 show two commonly used Boost topologies, the interleaved parallel Boost PFC converter
and the classic Boost PFC converter. The second LLSC RC generates steady current generation and
electrical isolation [74–76].

Figure 9. Boost PFC + LLSC resonant conversion LED driver.
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Figure 10. Figure showing LCD drivers with interleaved boost PFC and LLSC RC.

4.2. LCD TV with LLSC resonant converter

Due to their enhanced visual effects and environmental friendliness, LCD TVs have been developed [77–
79]. Manufacturers have set high standards for their constructed power supply, including compact size,
minimum interference, and light weight, in response to market demands for thin and light LCD TVs [80–82].
This is particularly true for big LCD TVs (those that are larger than 101.6 cm). It is challenging to achieve
these criteria with conventional converter options, like flyback or forward converters, due to the high power.
The LLSC resonant converter’s high switching frequency, which lowers harmonic and EMI pollution,
allows for the transformer to be tiny, light, and electrically isolated. As a result, LCD TV power supplies
frequently adopt LLSC RC-based utility power systems [83–85]. The most common setup is depicted in
Figure 11 and consists of a second-stage half-bridge LLSC RC and a PFC.

Figure 11. 11 Boost PFC and half-bridge LLSC resonant converter LCD TV power supply.

4.3. An EV charging station’s LLSC resonant converter

Due to their low impact on the environment and effective use of energy, electric vehicles are quickly
displacing internal combustion engines as the preferred means of transportation [86,87]. The availability of
acceptable driving range, high-power and speedy charging, and practical charging equipment, however,
limits the growth of EV charging infrastructure [88–90]. Relatively high power delivery and rapid switching
frequency, EV chargers must account for energy losses when they are being designed. The cost of converter
devices ought to be exorbitant, and there should be as few EV charging stations as is practical while taking
into account the cost of building integrated power plants [91–93]. As a consequence, the charging converter
needs to be extremely effective, shockproof, and energy dense. Thus, LLSC RC play a vital mark in the EV
chargers thanks to their soft-switching ability, great magnetic integration, widely applied in various range,
and high efficiency [94–96].
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The on-board controller (OBC) frequently employs Boost PFC + LLSC two-stage architecture to adjust
to the operating circumstances of a broad input and output [97–99]. While the boost stage raises the
wide-range input potential of 200-400V to the bus potential of 410 V, enhancing the power factor and
reducing EMI pollution, the LLSC resonant stage is in charge of the wide-output range, high efficiency,
and electrical isolation. Attention has also been drawn to the Bidirectional (Bi) OBC’s capacity to start
charging in forward mode and output AC current to the electric grid in reverse mode.

1. Full-bridge LLSC resonant converter with OBC of Boost PFC The single-phase Boost converter is
good for high voltage and has a straightforward structure with low hardware costs, as demonstrated in
Figure 12, but it also has a large filter volume, significant current stress, and ripple.

Figure 12. Complete bridge RC with OBC of PFC with boost converter.

2. OBC of complete bridge LLSC and bridgeless Boost PFC resonant converter. Because it lacks a
rectifier bridge, as illustrated in Figure 13, the bridgeless converter offers a significant efficiency
advantage, but the power factor is difficult to enhance, and the current ripple is substantial. Wide input
ranges are suitable for this topology. But for accurate control, costly Hall sensors are needed due to
the bridgeless PFC converter’s strong common mode EMI [100–102]. In order to lower the cost of
manufacturing, several academics and engineers advise employing the differential sampling method.

Figure 13. Full bridge with OBC of LLSC and bridgeless Boost PFC RC.

3. OBC of full-bridge LLSC RC and bridgeless Boost PFC with twin transformers. As shown in
Figure 14, double transformers can reduce transformer high while increasing energy density. It is also
straightforward to control in actual use. But OBC’s size and weight are also increased by the two
transformers [103, 104].
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Figure 14. OBC of full-bridge LLSC RC and bridgeless Boost PFC with twin transformers.

4. Parallel interleaved PFC with OBC and a full-bridge LLSC resonant converter. The advantages of the
first interleaved parallel Boost PFC converter are shown in Figure 15. It has a high energy density
and low ripple current, to start. As a result, the output potential of the wide-range input is stabilised
and the load on the current switches is reduced. Thirdly, it can exactly lower the converter’s inductor
and capacitor values. Fourth, it is simpler to construct a tiny radiator and converter dependability
is increased since the current at input current is shared by two channels. Despite this, there is a
significant energy loss due to the high equivalent series resistance [105–107].

Figure 15. Parallel interleaved PFC with OBC and a full-bridge LLSC resonant converter.

5. Bi-LLSC RC with Bi - OBC. The Bi-LLSC resonant converter, which can be shown in Figure 16,
replaces two converters, leading to a lower converter volume and a higher energy density [108, 109].
Additionally, good bidirectional efficiency and a broad selection of bidirectional output are attained.
However, it can be challenging to properly create or tune the parameters. When the resonant network
is working at maximum or low output, there is a lot of reactive power going through it, and both the
switch-off and resonant currents are large.

Figure 16. Bi-LLSC RC with OBC.
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4.4. In PV, LLSC RC

Due to its environmental friendliness, solar power generation has been extensively exploited and
industrialised in light of the energy crisis [110,111]. The solar grid-connected inverter, a crucial component
of the photovoltaic system, holds the clue to enhancing the effectiveness and dependability of the entire solar
PV power generating system, extending its lifespan, and lowering its financial costs [112, 113]. However,
current leakage will happen as a result of between the photovoltaic panel and the ground is a parasitic
capacitor, which not only puts people at risk but also safety in danger but also harms the electronics parts.
As a result, photovoltaic systems must be electrically isolated [113–115]. The LLSC resonant converter’s
ability to achieve It is possible to drastically lower switching losses of power devices through easy on off
cycles of the products, electrical isolation, and magnetic integration, which boosts efficiency, extends the
life of the devices, and improves PQ and safety [116–118].

The solar inverter is composed of the DC-DC Boost PFC stage, the DC-DC LLSC resonant stage, and
the DC-AC inverter stage.

1. Full-bridge LLSC resonant converter and a full-bridge inverter comprise the photovoltaic
inverter system: Figure 17 depicts the general layout of a grid connected LLSC photovoltaic inverter.
The high output at PV cell package is amplified by the DC-DC Boost converter in order to achieve
maximum power point tracking (MPPT) [119–121]. Electrical isolation and high frequency operation
are handled by the LLSC resonant converter. The electricity for the load is supplied by the inverter,
which is connected to the electrical grid.

Figure 17. Full-bridge LLSC resonant converter and a full-bridge inverter comprise the PV I system.

2. Full-bridge LLSC resonant converter and a full-bridge inverter comprise the photovoltaic
inverter system: In Figure 18, it can be shown that the interleaved Boost converter can follow the
reduce the filter size, increase the power point, and increase the photovoltaic array’s wide-range
output voltage to the designated bus voltage.

Figure 18. Photovoltaic system with full-bridge LLSC resonant interleaved parallel Boost PFC and
converter.
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3. A PV with a full-bridge inverter, Boost converter, and Bi-LLSC RC: The bidirectional LLSC
resonant converter can regulate power in both directions, isolate the electrical system, recover energy,
and maintain the stability of photovoltaic systems, as shown in Figure 19. The inverter also acts as a
peak cut, giving the load or power system additional energy.

Figure 19. Photovoltaic system with a full-bridge inverter, Boost converter, and Bi-LLSC resonant
converter.

5. The LLSC Resonant converter’s future development

There are numerous issues that need to be resolved despite substantial research on the LLSC resonant
converter. Numerous components must be associated in parallel or in series to assure the stability and
dependability of converters in silicon-based devices, increasing the cost of the device and heightening
on off cycle losses. SiC-based devices can perform maximum if they have superior thermal conductivity,
a wider band gap, a faster drift threshold speed, and a stronger breakdown electric field [50, 51]. The
reliability and efficiency of the converters can be increased while using fewer components by switching to
SiC-based devices in place of silicon-based ones [122–125]. Power electronic converters are continuously
improving toward low weight, compact size, and modularization thanks to SiC devices. They also created
the groundwork for a breakthrough in technology for distributed power and micro grid applications
using PV and storage in converters [126, 127]. GaN devices can switch huge value of voltage in just a
few nanoseconds, and they can take the role of Si equipment for severe-frequency environments with
frequencies of over one million Hz. Its low on-resistance, rapid switching, lack of reverse recovery loss,
narrow on-voltage threshold range, and advantageous high-frequency properties make this achievable. The
radiator and transformer’s compatibility. Because of the LLSC RC’s high switching frequency, smaller
transformers with higher frequencies can be used. The larger radiator components and higher switching
losses brought on by the more frequent switching cycles would result in a larger radiation system. Finding
a reasonable compromise between the volume at transformer and the volume at radiator is necessary to
increase the converter system’s density. The application of magnetic integration.

Particularly in Bi-LLSC resonant converters, high magnetic component counts will lead to decreased
energy density and increased losses. It magnetic integration is important to amalgamate numerous discrete
magnetic components into a magnetic component of single integration and minimise the volume and weight
of converter in order to decrease losses in energy and ripples at output and progress the converter’s overall
presentation. The trade-off between circulating conduction losses and switching losses. The converter’s
efficiency is at its peak and its circulating current is at its lowest when it is operating at the resonant point.
The switching loss, however, reduces and the circulating current, which increases, leading to an increase in
conduction loss when the on off cycles is adjusted and the effective point shifts to the sub-resonant zone.
On - off losses rise when the set point approaches the super-resonant zone because the mingling current
minimises, but the secondary does not reach ZCS. Therefore, it needs to be thoroughly assessed in a limited
gain range and a constrained, high-efficiency operational region. In direction to optimise the system plan,
loss supply at the resonant point is considered.
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6. Conclusions

The work done here is regarding the background review of LLSC resonant converter. The benefits of
LLSC resonant converters are then discussed in detail, along with the advantages and drawbacks of the
three topologies of LLSC resonant converters that are most frequently used in industrial applications. The
applications of LLSC resonant converters in many industries are also examined, with a focus on LCD TV
power supplies, LED drivers, solar systems, and OBCs. Finally, it is expected and discussed how LLSC
resonant converter technology will develop in the future.
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