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Abstract: This paper is concerned with the economic generation dispatch problem. It is a well-known
fact that practical aspects of power plant equipment, as well as the objectives to be met, may result in a
nonconvex, nondifferentiable model that poses difficulties to conventional mathematical programming
methods. This paper proposes the use of metaheuristic Teaching-Learning-Based Optimization to
overcome such difficulties. This metaheuristic is well known for requiring a few parameters and, most
importantly, it does not require the tuning of problem-dependent parameters. The algorithm proposed
in this work is parameter-free; that is, the few parameters required by the Teaching-Learning-Based
Optimization method are set automatically based on the power system’s data. In addition, the handling of
constraints, such as generators’ prohibited zones and the generator-load-loss power balance, is performed
in a very efficient way. Simulation results are shown for power systems containing 3 to 40 generation
units, and the results provided by the proposed method are shown and discussed based on comparisons
with other metaheuristics and a mathematical programming technique.
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1. Introduction

The economic dispatch (ED) problem can be concisely defined as the setting of output powers from
generating units to meet the demand at the minimum cost [1, 2]. The ED problem can be regarded as a
subproblem of the unit commitment problem [2]. The latter involves deciding which generation units must
be turned on to meet a certain demand. Hence, the ED problem involves determining the optimal operating
points of the committed generation units. The fuel rates are important factors that allow the generation
agents to achieve their highest possible efficiency levels [3]. The minimization of fuel costs eventually
results in lower energy costs for the consumers.
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The basic formulation of the economic generation dispatch problem has been long proposed in the
literature [4]. The ED constitutes a particular case of a broad set of optimal power flow (OPF) problems [5].
The OPF formulation consists in general of a non-linear, constrained, optimization problem as follows,

min f (x, u)
subject to g(x, u) = 0,

h(x, y) ≤ 0,
(1)

where f (x, u) is the objective function, x is the array of dependent or state variables, and u is the array of
independent or control variables. g(x, u) and h(x, u) are respectively the set of equality and inequality
constraints. Examples of control variables u are real power at generation buses, voltage magnitude at PV
buses, transformer taps, and shunt (capacitive and inductive) elements. The state variable vector x may
contain voltage magnitudes at load buses, reactive powers at generation buses, and transmission line power
loadings, among others.

Several methods have been reported to solve the economic dispatch problem. In general, they can be
broadly divided into two classes, namely (a) the mathematical programming methods and (b) the heuristics
and metaheuristics. The mathematical programming methods assume that functions are differentiable
or at least piecewise differentiable [2]. However, practical ED problems may require the inclusion of
several physical characteristics of the generation units that result in non-differentiable functions such as
the existence of prohibited generation zones. As a result, the ED model may be nonlinear and nonconvex,
and thus, conventional programming methods may exhibit convergence difficulties and computational
inefficiency. To overcome such problems, heuristics and metaheuristics appear to be promising alternatives
because they can handle nonconvex problems in an easier and seamless manner.

Several metaheuristics have been proposed for solving the economic dispatch problem as the Genetic
Algorithm (GA) [6, 7], Particle swarm optimization (PSO) [2], Teaching-Learning-Based optimization [8],
Artificial immune system [9], Firefly algorithm [10], among others.

Also, optimization methods can be either deterministic or stochastic [11]. Deterministic algorithms
always result in the same solution if the iterative process starts with the same input. On the other hand,
stochastic algorithms provide different solutions even if the same input is provided. It is important to
mention that those different solutions may be considered practically the same, given an accuracy threshold.
It is not possible to guarantee that using those methods lead to the optimal solution, however, experience
shows that they provide very good-quality solutions.

One of the main difficulties associated with metaheuristics is that several of them have parameters whose
settings are problem dependent. For instance, PSO [2] requires the inertia weight factors and acceleration
constants. The Firefly Algorithm (FA) [11] requires the light absorption coefficient and attractiveness.
Finally, the mutation rate, crossover probability, and the selection method are required in the GA [12].

The metaheuristic Teaching-Learning-Based Optimization (TLBO) was first proposed by Rao, Savsani,
and Vakharia [12]. TLBO is a nature-based algorithm, particularly, a population-based algorithm. TLBO
does not require any problem-dependent parameter to be tuned [13] other than the population size and
number of iterations [14]. This very interesting feature makes its implementation much simpler. According
to [14], TLBO is considered an algorithm-specific, parameter-less algorithm.

A review paper [13] provided a survey on the later developments in the TLBO algorithm and its
applications, as well as a description of the application fields. A modified TLBO algorithm was proposed
in [8]for solving the ED. Its main characteristics were the inclusion of a linearly variable teacher factor
and a tournament-based procedure for picking individuals. The basic TLBO algorithm in [14] included an
elitism procedure, thus preserving the best individuals along the iteration process. An improved TLBO



Transactions on Energy Systems and Engineering Applications, 4(1): 510, 2023 37 of 55

algorithm was proposed in [15], by considering that students also learn during tutorial hours by discussing
with their classmates or even by a discussion with the teacher. In addition, students were sometimes
self-motivated and tried to learn by themselves. Reference [16] shows a comparison of metaheuristics
GA, PSO, Simulated Annealing (SA), Exchange Market Algorithm (EMA), and TLBO for solving the ED
problem, and TLBO showed superior performance. An extensive comparison of metaheuristics for solving
the optimal power flow problem was presented in [5]. Once again, TLBO showed to be very efficient.

TLBO presents many advantages, such as (a) fewer parameters, (b) simple algorithm, (c) easy to
understand, (d) fast solution speed, (e) high accuracy, and (f) good convergence ability [13]. Being very
flexible, TLBO allows different variations and improvements, which is very interesting and even desired in
the optimization field. Because of its interesting features, TLBO has also been used for solving several
power-system-related problems besides the ED. Some examples are the optimal capacitor placement in
distribution systems [17], and distribution systems reconfiguration [18], among others.

The main goal of this paper is to apply an efficient version of the Teaching-Learning-Based Optimization
(TLBO) metaheuristic for solving the ED problem. The main contributions of this paper are twofold:

• TLBO was implemented such that no system parameters must be specifically defined. They are
automatically set according to the system’s characteristics.

• The inequality constraints are dealt with such as to avoid the use of penalty factors and therefore the
distortion of the objective function, making the convergence smoother.

The simulation results show that the proposed method leads to excellent results compared with
those in the literature. In addition, TLBO is conceptually simple and computationally efficient. This
paper constitutes a step forward in the development of optimization methods applied to power systems.
The ability to solve real-life problems by overcoming problems resulting from non-convexities and
non-differentiabilities is crucial.

2. Economic dispatch model

One of the requirements for an efficient power system operation is to make sure that the power is
generated at the minimum cost. In practice, the overall minimum cost cannot be obtained due to operational
constraints, which must be considered. In this case, the idea is to generate power at the least cost possible.
This process is known as the economic dispatch problem, and its main features will be described in this
section.

2.1. Objective function

As mentioned earlier, the ED problem consists of specifying the output powers from generation units to
meet the load at the minimum cost. Each thermal generation unit i is usually associated with a quadratic
cost function Ci which depends on the output power Pi [1]. For a power system with N generation units,
the total generation cost function Ct is given by,

Ct =
N

∑
i=1

Ci(Pi) =
N

∑
i=1

(ai + biPi + ciP2
i ), (2)

where coefficients ai, bi, and ci are previously known.
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2.2. Equality constraint

The power generated by the several generation units must supply the load and the transmission power
losses. This requirement is known as the power balance constraint, and it is given by,

N

∑
i=1

(Pi)− PD − PL = 0, (3)

where PD is the total power demand and PL corresponds to the total transmission power losses.
A simple, widespread way of representing the transmission power losses is by considering them a

quadratic function of the generation output powers [1, 2, 16], as,

PL = B00 +
N

∑
i=1

(B0jPi) =
N

∑
i=1

N

∑
j=1

(PiBijPj), (4)

where B00, B0j, and Bij are known as the B coefficients.

2.3. Inequality constraint – generation limits

The output power of generation units must lie within the range,

Pl
i ≤ Pi ≤ Pu

i , i = 1, ..., N, (5)

where Pl
i and Pu

i are respectively the lower and upper bounds associated to generation unit i.

2.4. Inequality constraint – prohibited operating zones

Prohibited zones are due to the steam valve operating or vibration in a shaft bearing [6]. The prohibited
zones associated with generation unit i are modelled as,

Pl
i,j ≤ Pi ≤ Pu

i,j, j = 1, ..., NPi, (6)

where NPi is the number of prohibited zones of generation unit i. Pl
i,j and Pu

i,j are the lower and upper
limits of prohibited zone j, respectively. Figure 1 shows an example cost curve for generation unit i as a
function of its generated power. Note the presence of two prohibited zones within the allowed power range
as described in Sec. 2.3.

2.5. Proposed ED model

The ED model proposed this paper is,

min (2)

subject to (3), (5), (6),
(7)

the objective Eq. (2) and the power balance constraint Eq. (3) are quadratic. It is worth pointing out once
more that the presence of prohibited zones implies in difficulties to conventional mathematical programming
methods.
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Figure 1. Example cost curve for generation unit i. Adapted from [6].

2.6. Other aspects of ED models

The basic model of the economic dispatch is theoretically simple; however, it may become increasingly
complex due to the size of the problem, the coordination the different characteristics and operating costs
due to different generation technologies and sources, the variations in load over daily and seasonal cycles,
and the need to operate the system reliably, abiding by transmission line operating limits [19]. In addition,
the security-constrained economic dispatch adds more difficulties to the problem since it must consider the
possibility outages (contingencies), either in the generation or the transmission systems.

Still, according to [19], the economic dispatch has gotten more complex because of the incorporation
of public policy changes, technological innovation, and the ever-increasing penetration of stochastic,
intermittent generation, such as wind and solar generation, as well as energy storage.

Several other practical aspects can be included in the ED model. It is worth noting that the inclusion of
such aspects does not affect the performance of the metaheuristic algorithm proposed in this paper. Some
of those aspects are included here for the sake of example, without the intention of being comprehensive.

It is possible to include the valve-point effects, which appears in the objective function, by including an
additional term to (OC) [7, 16, 20], resulting in,

C′t =
N

∑
i=1

(ai + biPi + ciP2
i ) + |ei · sin [ fi · (Pi,min − Pi)] | (8)

where ei and fi are coefficients related to the valve loading of generation i.
Also, [20] modelled the fuel cost as a cubic function and discussed the inclusion of other aspects to the

objective function, such as the cost of emission of pollutants and fuel limitation.
A constraint related to imposing limits to transmission line power flows are represented as,

|Pk| ≤ Plim
k k = 1, ..., L, (9)

where L is the number of transmission lines.
The ramp rate limit constraint is related to maximum generation changes between time periods, being

given by,
− Dri ≤ Pi,t − Pi,(t−1) ≤ URi, i = 1, ..., N, (10)
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Figure 2. Illustration of ramp limits for generation unit i. Adapted from [6].

where DRi and URi are respectively the down-ramp and up-ramp limits from generation unit i. Pi,t and
Pi,(t−1) are the generation output powers of generation unit i at two consecutive time instants. Figure 2
illustrates the case where Pi,t > Pi,(t−1). Note that Pi,t must lie within the range delimited by URi.

It is worth noting that the aspects mentioned in this section can be included in the model and solved by
metaheuristics despite their characteristics as far as linearity and convexity are concerned.

3. Teaching-Learning-Based Optimization

The algorithm of the TLBO implemented in this paper was based on [12] and [21]. Both the teacher and
student phases were applied to all individuals. Also, the removal of duplicate individuals was not included.
As a result, the number of evaluations of the objective function is deterministic, given by,

Eval = (2 · IT + 1) · Np, (11)

where IT is the number of iterations and Np is the population size.

3.1. Basic algorithm

The following pseudo-code (Algorithm 1) shows the basic steps of the algorithm proposed and
implemented in this paper.

3.2. Implementation details and comments

The following comments regarding the algorithm are important for its implementation.

• Both teacher and student phases consist of greedy selection processes, where a new individual (solution
candidate) solution is accepted whenever it is better than the current one.

• The population size is defined automatically in terms of the number of generation units N, as,

Np = 10 · N, (12)

therefore, the proposed algorithm is parameter-free.
• The teaching factor TF can be either set as a constant [21] or as a random value [12]. In this paper, TF

was set according to [12].
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Algorithm 1: Teaching-Learning-Based Optimization Algorithm.
1. Generate the initial Population Xi, i = 1, . . . , Np

Teacher phase:;
2. Compute the mean individual M = mean(X);
3. Choose the Teacher T;
4. Compute direction ∆ = r · (T− TF ·M), where r is a random number in the range [0, 1] and TF

is the teaching factor randomly chosen as either 1 or 2;
5. for each individual i, i = 1, . . . , Np do

a. Obtain new individual X′i = Xi + ∆;
b. if Xi is better than X′i then

Maintain Xi in the population;
else

Xi ← X′i ;
end

end
end

Student phase:;
6. for each individual Xi, i = 1, . . . , Np do

a. Choose an individual Xj randomly;
b. if Xi is better than Xj then

Better = Xi and Worse = Xj;
else

Better = Xj and Worse = Xi;
end

end
c. Compute Di f f = Better−Worse;
d. Obtain a new individual X′i = Xi + r · Di f f ;
e. if Xi is better than X′i then

Maintain Xi in the population;
else

Xi ← X′i ;
end

end
end
7. Stopping criterion was met? If so, stop. Else, go back to step 2;
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• The stopping criterion adopted in this paper is based on the evolution of the objective function. If the
objective function remains the same for (10 · N) consecutive iterations, it is assumed that its optimal
value has been reached and the process is interrupted.

• Whenever new individuals are generated, such as in steps 1, 5(a), and 6(d), it is necessary to verify
whether they meet the equality and inequality constraints. In other words:

– The power balance constraint Eq. (3) must be met.
– The generated powers must be within the lower-upper range Eq. (5), and outside the prohibited

zone regions Eq. (6).

The way to deal with these inequalities is described in detail in the next section.

4. Dealing with constraints

Consider the following mathematical programming problem,

min f (u)
subject to gi(u) ≥ 0 i = 1, . . . , NI

hj(u) = 0 j = 1, . . . , NE

ul
k ≤ uk ≤ uu

k k = 1, . . . , N,

(13)

where f is the objective function, and g and h are respectively the sets of inequality and equality constraints.
u is the array of decision variables, bound by lower and upper limits ul and uu. N, NE, and NI are
respectively the numbers of decision variables, equality constraints, and inequality constraints.

According to [22], the conventional strategies of handling constraints in an optimization problem can
be broadly classified as Eq. (1) inclusion penalty functions, Eq. (2) decoders, Eq. (3) special operators,
and Eq. (4) separation of objective function and constraints. The latter strategy is used in this paper. As
mentioned earlier, whenever new individuals are generated, it is necessary to verify whether they meet the
equality and inequality constraints. This verification is described in detail ahead.

4.1. Equality constraints

A conventional way of dealing with equality constraints is by squaring and adding them to the objective
function using a penalty factor, resulting in,

F(u) = f (u) + µ · h2
j (u), (14)

where the penalty factor µ is usually a large number. According to [23], the penalty factor has several
drawbacks, such as (a) it is system-dependent, therefore, the user must search for the best factor through
a trial-and-error procedure whenever any parameter undergoes any change; (b) its value influences
significantly the solution of the problem; and (c) the penalty factor µ causes a distortion of F and,
depending on its value, this distortion may lead to artificial, local optimal solutions.

To cope with this problem, in this paper the equality constraints in Eq. (13) are replaced by,

|hj(u)| ≤ ε, (15)

where ε is a small, positive threshold value.
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It is a common practice to add the constraints to the objective function with the inclusion of penalty
factors. In this paper, the constraints are treated separately, following the principles presented in [23].
Whenever a candidate solution is evaluated, the following rules apply.

• Any feasible solution is preferred to any infeasible solution.
• Among two feasible solutions, the one having a better objective function value is preferred.
• Among two infeasible solutions, the one having smaller constraint violation is preferred.

It will be shown that by handling the constraints described above, the drawbacks associated with the use
of penalty factors mentioned earlier can be overcome. Setting ε in Eq. (15) is significantly easier than that
of µ in Eq. (14), and its value does not significantly affect the results. This constraint-handling technique
has been used in several studies [14]. Considering that the model in Eq. (7) adopted in this study, there is
only one equality constraint represented by Eq. (3). Parameter ε was set to 0.05 MW, which is the same
for any power system.

4.2. Inequality constraints

In this paper, the inequality constraints included in Eq. (7) are:

• The lower and upper power bounds of the generation units, and
• The prohibited power generation regions.

In this paper the following, simple rule is used to consider inequality constraints: “if a generation
unit violates a certain limit, its output value is set to the closest violated limit.” As an example, assume
a generation unit with lower and upper limits corresponding to 100 MW and 300 MW, respectively. In
addition, we consider a prohibited zone [140− 170] MW. If, in a certain iteration, the generation is set to
320 MW (violation of the upper limit), it is reset to 300 MW. If the generation is set to 160 MW (within
the prohibited zone), it is reset to 170 MW.

5. Simulation results

This section presents the simulation results for power systems with 3, 6, 15, and 40 generation units.
These systems are well known in the literature and their respective data are widely available. Therefore, the
results of the proposed method can be compared with those available in the literature. The results provided
by the proposed method were compared with those of other metaheuristics and mathematical programming
methods. The latter is successive quadratic programming, implemented using the SQP function from
Octave [24]. SQP is assumed to provide the exact solution, and it is taken as a reference for comparison
with other methods. Each simulation was run 100 times, and the averages and standard deviations are
shown.

5.1. 3-unit system

The data from the 3-unit system was taken from [1]. The load for this system was set to 850 MW. In
this case the generators do not present prohibited zones, therefore, model Eq. (7) does not include Eq. (6).
Table 1 presents a comparison of the results obtained with TLBO with those provided by running function
SQP from Matlab. Function SQP (Sequential quadratic programming) is an iterative method for constrained
nonlinear optimization problems.

The results provided by TLBO are very close to those obtained by SQP, since the global optimum
operating point provided by SQP lies within the range of values provided by TLBO (average ± std
deviation). Note also that the 3-unit system is considered small, since it has only three decision variables.
Also, since this system does not present any prohibited zones, there are not non-convexities in the model.
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Iterations P1 [MW] P2 [MW] P3 [MW] Ploss [MW] Ct [$]

Average 52.4 438.5 292.7 132.7 13.9 8,335.50
Std Deviation 19.8 36.4 34.7 23.1 2.24 18.7

SQP - 435.2 300.0 130.7 15.8 8,344.60

Table 1. 3-unit system – simulation results provided by TLBO and [1].

Figure 3. 3-unit system – evolution of the objective function.

Figure 3 shows the evolution of the value of the objective function along the iterative process. The
presence of the equality constraint Eq. (3) leads the objective function to increase as the iterative process
progresses. In the first iterations, the individuals may have lower generation costs, however, the constraints
are violated. Later on, the situation is reversed, and TLBO moves toward the optimal solution through
feasible individuals.

5.2. 6-unit system

The complete data of the 6-unit system, including the cost coefficients, loss coefficients, generation
limits, and prohibited zones was taken from [2]. The system’s load was set to 1, 263 MW. Table 2 shows
the results obtained by the proposed method.

A comparison of the best results obtained by the proposed TLBO, as well as by PSO and GA [2] are
shown in Table 3. Column SQP is also included for comparison purposes.

Table 4 shows the average and best total generation costs provided by the proposed TLBO, as well as
by PSO and GA [2], by modified algorithms of PSO [25, 26]. According to [2], PSO and GA were run 50
times. The proposed TLBO was run 100 times. Row SQP is also included for comparison purposes.

Table 2 to Table 4 clearly show that TLBO performed very well in comparison with the other
metaheuristics, outperforming the other methods as far as the average and best generation costs, as
compared with SQP.

Figure 4 shows the evolution of the values of the objective function for the 6-unit system. The general
behavior of the objective function, in this case, is like the one from Figure 3.
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Average std desviation

Iterations 68.9 20.1

P1 [MW] 456.3 19.1
P2 [MW] 173.3 17.4
P3 [MW] 261.9 16.1
P4 [MW] 131.1 14.1
P5 [MW] 163.3 16.1
P6 [MW] 89.2 15.7

Total [MW] 1,275.0 0.7
Ploss [MW] 12.0 0.7

Ct [$] 15,430.00 11.7

Table 2. 6-unit system – simulation results provided by TLBO.

PSO [2] GA [2] SQP TLBO

P1 [MW] 447.5 474.8 450.2 457.0
P2 [MW] 173.3 178.6 173.7 160.0
P3 [MW] 263.5 262.2 258.4 269.4
P4 [MW] 139.1 134.3 138.2 128.0
P5 [MW] 165.5 151.9 163.6 163.1
P6 [MW] 87.1 74.2 90.9 95.6

Total [MW] 1,276.0 1,276.0 1,275.1 1,273.0

Ploss [MW] 13.0 13.0 12.1 10.0

Ct [$] 15,450.00 15,459.00 15,419.00 15,393.00

Table 3. 6-unit system – comparison of best results.

Average generation Best generation
cost [$] cost [$]

PSO [2] 15,454.00 15,450.00
GA [2] 15,469.00 15,459.00
MIPSO [25] 15,445.10 15,442.98
QPGPSO-W [26] 15,448.45 15,440.58
TLBO 15,430.00 15,393.00

SQP 15,419.00

Table 4. 6-unit system – comparison of average and best results.

5.3. 15-unit system

The data from this system, including the cost coefficients, loss coefficients, generation limits, and
prohibited zones was taken from [2]. The system’s load is 2, 630 MW. Table 5 contains the simulation
results obtained by TLBO.

A comparison of the best results provided by TLBO with those provided by PSO and GA [2] are shown
in Table 6. Once more, column SQP was included for comparison purposes.
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Figure 4. 6-unit system – evolution of the objective function.

Average Std Deviation

P1 [MW] 401.4 71.5
P2 [MW] 402.5 72.4
P3 [MW] 119.0 63.2
P4 [MW] 115.7 20.5
P5 [MW] 322.2 27.0
P6 [MW] 427.0 108.8
P7 [MW] 437.8 53.6
P8 [MW] 88.2 44.8
P9 [MW] 60.5 43.2
P10 [MW] 81.6 41.9
P11 [MW] 50.1 51.2
P12 [MW] 60.1 23.0
P13 [MW] 36.7 22.1
P14 [MW] 28.9 15.5
P15 [MW] 30.7 14.3

iterations 161.1 71.5
Total [MW] 2,662.3 3.9
Ploss [MW] 32.3 3.9
Ct [$] 32,836.1 105.2

Table 5. 15-unit system – simulation results provided by TLBO.

Table 7 shows the average and best generation costs provided by TLBO, as well as by PSO and GA [2],
by MIPSO [25], and by QPGPSO-W [26]. Again, TLBO was run 100 times, while PSO and GA were run
50 times [2]. Row SQP is also included for comparison purposes.

Table 5 to Table 7 show that TLBO performed very well as compared to the other methods and to SQP.
The results provided by TLBO for this system stand among the best shown in Table 7.
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PSO GA SQP TLBO

P1 [MW] 439.1 415.3 455.0 425.7
P2 [MW] 408.0 359.7 455.0 455.0
P3 [MW] 119.6 104.4 130.0 130.0
P4 [MW] 130.0 75.0 130.0 130.0
P5 [MW] 151.1 380.3 235.3 233.6
P6 [MW] 460.0 426.8 460.0 460.0
P7 [MW] 425.6 341.3 465.0 465.0
P8 [MW] 98.6 124.8 60.0 60.0
P9 [MW] 113.5 133.1 25.0 25.9
P10 [MW] 101.1 89.3 30.0 101.4
P11 [MW] 33.91 60.06 75.0 38.41
P12 [MW] 79.96 50.00 80.0 50.50
P13 [MW] 25.00 38.77 25.0 27.02
P14 [MW] 41.41 41.94 15.0 18.78
P15 [MW] 35.61 22.64 15.0 36.51

Total [MW] 2,662.4 2,668.4 2,655.4 2,657.7
Ploss [MW] 32.43 38.28 25.4 27.69
Ct [$] 32,858.00 33,113.00 32,532.00 32,636.00

Table 6. 15-unit system – comparison of the best results.

Average generation Best generation
cost [$] cost [$]

PSO [2] 33,039.00 32,858.00
GA [2] 33,228.00 33,113.00
MIPSO [27] 32,745.00 32,697.54
QPGPSO-W [25] 32,589.54 32,548.19
TLBO 32,836.08 32,636.00

SQP 32,532.00

Table 7. 15-unit system – comparison of average and best results.

Figure 5 shows the evolution of the values of the objective function along the iterative process. Again,
the behaviour of the objective function in this case is similar to the ones shown in Figure 3 and Figure 4.

5.4. 40-unit system

The complete data, including the cost coefficients and generation limits, can be found in [27]. The
demand of the 40-unit system is 10, 550 MW. Table 8 shows the results obtained by TLBO after 100 runs.

Generation cost [$]

Minimum 146,900.00
Average 151,786.20
Maximum 164,810.00
Std deviation 3,505.10

Table 8. Simulation results for the 40-unit system.
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Figure 5. 15-unit system – evolution of the objective function.

Table 9 shows the average output powers for the generating units for a load of 10, 550 MW.

Average [MW] Std. deviation [MW] Average [MW] Std. deviation [MW]

P1 [MW] 64.92 14.32 P21 [MW] 535.39 21.27
P2 [MW] 101.95 18.95 P22 [MW] 537.43 24.14
P3 [MW] 167.58 30.36 P23 [MW] 532.61 25.06
P4 [MW] 33.29 6.73 P24 [MW] 531.32 28.03
P5 [MW] 34.24 6.04 P25 [MW] 530.86 26.88
P6 [MW] 119.32 25.25 P26 [MW] 529.55 32.3
P7 [MW] 279.69 33.06 P27 [MW] 535.1 25.37
P8 [MW] 272.33 41.59 P28 [MW] 47.27 33.62
P9 [MW] 281.13 24.76 P29 [MW] 48.58 34.89
P10 [MW] 274.62 36.45 P30 [MW] 46.23 31.99
P11 [MW] 349.7 35.41 P31 [MW] 51.34 17.73
P12 [MW] 354.26 29.37 P32 [MW] 49.2 19.27
P13 [MW] 475.52 32.6 P33 [MW] 47.68 17.85
P14 [MW] 478.26 34.41 P34 [MW] 49.8 17.57
P15 [MW] 482.45 23.74 P35 [MW] 37.47 15.17
P16 [MW] 476.11 32.28 P36 [MW] 42.44 14.67
P17 [MW] 482.16 26.93 P37 [MW] 42.42 14.62
P18 [MW] 485.96 22.23 P38 [MW] 42.75 13.7
P19 [MW] 478.9 33.54 P39 [MW] 42.01 12.84
P20 [MW] 534.68 25.41 P40 [MW] 43.53 13.58

Table 9. Output powers for the 40-unit system.

Figure 6 shows a comparison of the results obtained by the proposed TLBO with those obtained by
CSO, PSO, and GA [27]. The figure allows a visual comparison among the output generations provided by
each method. By taking one generation unit at a time, it is possible to see that all four methods provide
compatible, close results.

The average total generation and costs provided by CSO, PSO, and GA [27], as well as by the proposed
TLBO are shown in Table 10. Note that the method adopted in this paper for handling the equality
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Figure 6. 40-unit system – Comparison of TLBO with CSO, PSO, and GA.

constraints allows a very good precision without creating numerical problems. Row SQP has been included
for comparison purposes.

Total cost [$/year] Total generation [MW]

CSO [27] 133,438.27 10,549.91
PSO [27] 134,237.31 9,401.17
GA [27] 144,893.23 10,549.88
TLBO (average) 146,035.10 10,550.00
TLBO (best) 144,750.00 10,550.00

SQP 144,740.00

Table 10. 40-unit system – comparison of TLBO, PSO, and GA.

It is not clear in [27] whether the results are the best ones, or average values, the reason why both the
average and best results provided by TLBO were presented. Also, the total costs provided by TLBO are
compatible with those provided by GA and SQP; however, they are larger than those provided by CSO
and PSO. It seems odd that CSO and PSO show similar costs; however, the sum of all generations, as
shown in [27], is quite different. In particular, the total generation reported for PSO is more than 1, 000
MW shorter than the specified value. The evolution of the objective function value is shown in Figure 7.
Again, its general behavior is similar to that of previous ones.

6. Discussion

The simulation results presented in Section 5 clearly indicate the excellent characteristics of TLBO. In
all simulations, TLBO provided the best or close-to-best results. All metaheuristics are based on a random
initial population and random exploration and exploitation search. However, they may provide different
results depending on the manner in which the searches are defined. In this work no changes in the TLBO
algorithm were performed to adapt to the particular problem (ED). The idea of automatically defining the
number of individuals in the population and handling constraints may be applied to any other optimization
problem. Therefore, TLBO proved to have excellent potential for solving the economic dispatch problem
and any other problem in the power system area.
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Figure 7. Evolution of the objective function for the 40-unit system.

7. Conclusions

This paper tackled the problem of economic generation dispatch. Even though this problem is well
known, its formulation may result in a nonlinear, nonconvex model, which may pose numerical difficulties
to mathematical programming methods. This work showed that metaheuristic TLBO is a simple and
efficient method for solving ED. The automatic setting of its parameters, regardless of the system, is an
important feature of the proposed method, and has been shown to be very effective. In addition, dealing
with these constraints did not result in numerical problems, which are commonly found when penalty
methods are used. In contrast, the iterative process was smooth, and high-quality results were obtained
successfully. The simulation results obtained using the proposed method were compared with those
reported in the literature. Also, simulation results from a mathematical programming method based on
successive quadratic programming were also shown for comparison. The proposed method exhibited
excellent performance. The use of TLBO to solve the ED problem has now expanded. The next steps
consist of including actual aspects into the model, such as the effect of valve points and the minimization of
the greenhouse effects, as described in Sec. 3.6. Also, the active power losses and power balance are more
appropriately represented by the power flow equations. These aspects would result in a more realistic ED
model and more precise representation of the electric system. The inclusion of nonlinear terms regarding
the valve point effect would not significantly change the performance of TLBO because one of the strong
characteristics of metaheuristics is their capability to handle nonlinearities and nonconvexities. The use of
power flow equations does not at all affect the performance of TLBO, because its idea is to represent power
losses in a more precise way and to automatically meet the generation-load balance (constraint).
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Appendix – Systems’ data

3-unit generation system [1]

Gen a b c Pmin [MW] Pmax [MW]

1 561 7.92 0.001562 150 600
2 310 7.85 0.00194 100 400
3 78 7.97 0.00482 50 200

Table 11. Data from the 3-unit generation system.

B00 = 0

B0j =
[
0 0 0

]

Bij =

0.00003 0 0
0 0.00009 0
0 0 0.00012


6-unit generation system [2]

Gen a b c Pmin [MW] Pmax [MW] Pl [MW] Pu [MW]

1 240 7 0.007 100 500 210 240
2 200 10 0.0095 50 200 90 110
3 220 8.5 0.009 80 300 150 170
4 200 11 0.009 50 150 80 90
5 200 10.5 0.008 50 200 90 110
6 190 12 0.0075 50 120 75 85

Table 12. Data from the 6-unit generation system.

B00 = 0.056

B0j =
[
−0.3908 −0.1297 0.7047 0.0591 0.2161 −0.6635

]
× 10−3

Bij =



0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002
0.0012 0.0014 0.0009 0.0001 −0.0006 −0.0001
0.0007 0.0009 0.0031 0 −0.001 −0.0006
−0.0001 0.0001 0 0.0024 −0.0006 −0.0008
−0.0005 −0.0006 −0.001 −0.0006 0.0129 −0.0002
−0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.015


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Gen a b c Pmin [MW] Pmax [MW]

1 671 10.1 0.000299 150 455
2 574 10.2 0.000183 150 455
3 374 8.8 0.001126 20 130
4 374 8.8 0.001126 20 130
5 461 10.4 0.000205 150 470
6 630 10.1 0.000301 135 460
7 548 9.8 0.000364 135 465
8 227 11.2 0.000338 60 300
9 173 11.2 0.000807 25 162
10 175 10.7 0.001203 25 160
11 186 10.2 0.003586 20 80
12 230 9.9 0.005513 20 80
13 225 13.1 0.000371 25 85
14 309 12.1 0.001929 15 55
15 323 12.4 0.004447 15 55

Table 13. Data from the 15-unit generation system.

Gen Prohibited zones [MW]

2 [185 225] [305 335] [420 450]
5 [180 200] [305 335] [390 420]
6 [230 255] [365 395] [430 455]
12 [30 40] [55 65]

Table 14. Data from the 15-unit generation system (cont.).

15-unit generation system [2]

B00 = 0.0055

B0j = [−0.0001 −0.0002 0.0028 −0.0001 0.0001 −0.0003 −0.0002

−0.0002 0.0006 0.0039 −0.0017 0− 0.0032 0.0067 −0.0064]
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Gen a b c Pmin [MW] Pmax [MW]

1 170.44 8.336 0.03073 40 80
2 309.54 70.706 0.02028 60 120
3 369.03 81.817 0.00942 80 190
4 135.48 69.467 0.08482 24 42
5 135.19 65.595 0.09693 26 42
6 222.33 80.543 0.01142 68 140
7 287.71 80.323 0.00357 110 300
8 391.98 6.999 0.00492 135 300
9 455.76 6.602 0.00573 135 300
10 722.82 12.908 0.00605 130 300
11 635.2 12.986 0.00515 94 375
12 654.69 12.796 0.00569 94 375
13 913.4 12.501 0.00421 125 500
14 1760.4 88.412 0.00752 125 500
15 1728.3 91.575 0.00708 125 500
16 1728.3 91.575 0.00708 125 500
17 1728.3 91.575 0.00708 125 500
18 647.85 79.691 0.00313 220 500
19 649.69 7.955 0.00313 220 500
20 647.83 79.691 0.00313 242 550
21 647.83 79.691 0.00313 242 550
22 785.96 66.313 0.00298 254 550
23 785.96 66.313 0.00298 254 550
24 794.53 66.611 0.00284 254 550
25 794.53 66.611 0.00284 254 550
26 801.32 71.032 0.00277 254 550
27 801.32 71.032 0.00277 254 550
28 1055.1 33.353 0.52124 10 150
29 1055.1 33.353 0.52124 10 150
30 1055.1 33.353 0.52124 10 150
31 1207.8 13.052 0.25098 20 70
32 810.79 21.887 0.16766 20 70
33 1247.7 10.244 0.2635 20 70
34 1219.2 83.707 0.30575 20 70
35 641.43 26.258 0.18362 18 60
36 1112.8 96.956 0.32563 18 60
37 1044.4 71.633 0.33722 20 60
38 832.24 16.339 0.23915 25 60
39 832.24 16.339 0.23915 25 60
40 1035.2 16.339 0.23915 25 60

Table 15. Data from the 40-unit generation system.
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