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Abstract: This paper presents examples of high-speed 3D optical sensing for research and applications
in the manufacturing community. Specifically, this paper will focus on the fringe projection technique
as a special technology that can be extremely beneficial to manufacturing applications, given its merits
of simultaneous high-speed and high-accuracy 3D surface measurements. This paper will introduce the
basic principles of 3D optical sensing based on the fringe projection technique as well as the enabled
manufacturing research applications, including both in-situ/in-process monitoring and post-process quality
assurance.
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1. Introduction

In the coming era of Industry 4.0 and smart manufacturing, the importance of smart sensors and
sensing systems has been increasingly emphasized [1]. The recent advances in machine/computer
vision technologies have produced new smart sensors and sensing systems impacting different aspects
of manufacturing processes. Three-dimensional (3D) optical sensing technologies, which add one more
dimension on top of conventional imaging and vision technologies, will provide a much greater impact to
scientists and researchers in the field of smart manufacturing, given their ability to digitize the scenes being
viewed in 3D [2, 3, 4].

For manufacturing processes, 3D optical sensing could impact aspects ranging from in-process
monitoring and diagnosis to post-process quality inspection. Conventionally, a 3D optical sensing system
is mostly used for post-manufacturing part dimensional inspections with precision static 3D geometric
profiling. As a nondestructive method, 3D optical sensing can significantly increase the inspection speed,
and throughput of traditional contact methods such as stylus profilometers or coordinate measuring machines
(CMM) [5, 6]. However, as smart manufacturing puts more emphasis on in-process decision-making and
closed-loop control, conventional static 3D optical sensing may no longer satisfy the requirement, given
that real-time data acquisition and processing are needed. Taking the advanced additive manufacturing
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technology as an example where in-process diagnosis plays a significant role, a real-time 3D optical sensing
system can be extremely valuable if incorporated into the envelope of an additive printing machine to
acquire the layer-by-layer surface topographies of the printed constructs [7, 8]. Achieving this, however,
poses significant challenges for current 3D optical sensing techniques, given the combined requirements of
high speeds and high accuracies for the measured 3D surface topographies.

Recent major advancements in computing power and graphics have drastically boosted the development
of 3D optical sensing technologies [9, 10]. Capabilities (e.g., real-time measurements) that were barely
even thought possible a few years ago are now being introduced into the field of 3D optical sensing. The 3D
optical sensing approaches can be broadly divided into three major categories: interferometry, time-of-flight,
and triangulation [11]. Interferometry [12, 13, 14] is by far the most accurate type of 3D optical metrology
technique, which can achieve an accuracy as high as nanometers. However, interferometry typically has
a limited range of measurements (e.g., at micrometer scale) and thus is typically used as a post-process
inspection technology. Time-of-flight [15, 16, 17, 18] is a technique that emulates the echolocation of
certain types of animals (e.g., a bat), where the depth or distance information is typically obtained by
calculating the round-trip traveling time of emitted light source. This technology is generally well-suited for
measuring a large scene (e.g., with a room size) and has been used in commercial products such as Microsoft
Kinect V2 [19]. However, given the ultra-fast speed of light, it is difficult for the time-of-flight technology
to detect a depth difference smaller than one millimeter, which can be vital to recognize small features on a
surface. Triangulation-based approaches are the most suitable technology for measuring medium-scale
objects (e.g., a length scale from 1 cm to 1 m). The three most well-known triangulation-based technologies
include laser scanning [20, 21, 22, 23], stereo vision [24, 25] and structured light [26, 9, 10]. The laser
scanning method performs line-by-line scanning to obtain the surface topography of the scene, whose
performance can be reduced when trying to map a complicated surface containing fine-scale features. The
stereo 3D vision method obtains the 3D information through correspondence matching and triangulation,
yet the correspondence identification can be difficult when the imaged scene lacks rich features for
stereo matching. The structured light 3D vision overcomes these limitations by performing simultaneous
whole-area scanning with codified structured illumination. Specifically, the fringe projection method that
uses continuous sinusoidal codifications has achieved real-time (e.g., 30 Hz) 3D imaging with tens of µm
accuracy or higher [27, 28, 29]. Given its capability of characterizing small features with minimal time
delay induced by 3D imaging and reconstruction, the fringe projection technique can be regarded as the
most suitable technology for in-process monitoring and inspection for many manufacturing processes.

This paper will introduce the basics of high-speed 3D optical sensing and the perspectives of its related
research and applications in the manufacturing community. Specifically, a major focus will be put on the
high-speed fringe projection technique, given its capability of simultaneous high-speed and high-accuracy
measurements. The perspectives on how high-speed and high-accuracy fringe projection-based 3D optical
sensing could benefit the manufacturing research will also be introduced, including how one could use such
technology for both in-situ/in-process monitoring and post-process quality assurance. Specifically, in-situ
measurements of an additive manufacturing process (i.e., direct energy deposition) will be demonstrated as
an example of in-situ/in-process monitoring; and examples of precision geometric profiling, morphological
data analysis, and surface integrity characterizations will be demonstrated as practical cases for post-process
quality assurance.

Section 2 introduces the theoretical foundations of high-speed 3D optical sensing, including the
background and the basics of the fringe projection technique, the phase shifting technique as one of
the most widely used fringe analysis techniques, and some challenges in applying the fringe projection
technique for industrial practices. Section 3 introduces the related manufacturing research and applications,
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Figure 1. A schematic illustration of the fringe projection technique.

which include both in-situ/in-process monitoring and post-process quality assurance. Section 4 will serve
as an executive summary of this paper.

2. Principles of high-speed 3D optical sensing

2.1. Basics of the fringe projection technique

3D optical techniques have achieved great success in medicine, virtual reality, tele-surgery, and many
other disciplines. Optical means to perform high-speed 3D shape measurements are typically based on
triangulation (e.g., stereo vision, spacetime stereo, laser scanning, structured light). The driving principle is
to recover depth by matching and geometrically relating distinct regions of a scene viewed from different
angles. The structured light approach, which hinges on the projection of known structured patterns onto
objects, has brought increased attention because of its flexibility, speed, accuracy, and its ability to measure
surfaces without strong natural features [30]. However, its spatial resolution is limited to being larger than
a projector’s pixel because of the need to encode artificial features using projector images [26].

The fringe projection technique is a variation of the structured light method where patterns with
sinusoidally varying structures are illuminated. Sinusoidal structures have the advantage of being continuous
and differentiable from neighboring pixels. Thus, high spatial resolutions at the camera-pixel-level can be
achieved. Figure 1 shows a fringe projection system. The projector shines one-dimensional, sinusoidally
varying stripes onto the sample object, and the camera captures the stripes distorted by the object’s surface
geometry. Fringe analysis techniques such as the phase shifting method (to be introduced next) are
employed to identify the pixel-to-pixel correspondence between a projector point and a camera image point.
Finally, the 3D coordinates are computed by the triangulation relationship between the projection unit (A),
the 3D object (B), and the image acquisition unit (C).

2.2. The phase shifting technique

The key to a high-quality 3D reconstruction for the fringe projection technique is to select an accurate
fringe analysis technique. Many fringe analysis methods were developed in the optics community, including
the single-shot Fourier transform method [31] and the multi-shot phase shifting method [32]. For industrial
measurements, the phase shifting technique is preferred compared to the Fourier transform method, given
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Figure 2. A demonstration of an example phase shifting process. (a) - (c) Example of three-step phase
shifted fringe images; (d) wrapped phase map; (e) unwrapped phase map; (f) 3D geometry.

its ability better resolve the details of complex geometries. The basic principle of phase shifting is to project
a set of sinusoidal patterns with equal phase shifts applied and then capture the corresponding camera
images. The mathematical description of the phase-shifting method can be written as follows:

Ii(x, y) = I′(x, y) + I′′(x, y) cos(ϕ + δi), (1)

where Ii(x, y) denotes the i − th captured fringe image as shown in Fig. 2(a) - 2(c) for a three-step
(i = 1, 2, 3) phase shifting example; I′(x, y) and I′′(x, y) respectively denote the average intensity and the
intensity modulation; δi = 2iπ/N denotes the phase shift added to the i-th fringe image. The phase map
ϕ(x, y), which contains unique information regarding the object geometric profiles, can be obtained by
solving simultaneous equations such that

ϕ(x, y) = − arctan

[
∑N

i=1 Ii sin(2iπ/N)

∑N
i=1 Ii cos(2iπ/N)

]
. (2)

The solved phase map ϕ(x, y) naturally contains 2π discontinuities given the nature of the arctangent
function, as shown in Fig. 2(d). To remove such discontinuity and obtain an absolute phase map, one can
employ a temporal phase unwrapping method [33, 34] to obtain a final absolute continuous phase map
Φ(x, y).

Φ(x, y) = ϕ(x, y) + k(x, y)× 2π. (3)

After obtaining the absolute continuous phase map Φ(x, y) as shown in Fig. 2(e), a phase-to-3D
coordinate conversion can be performed by treating both the camera and the projector as pinhole imaging
systems [35], and the sample result can be found in Fig. 2(f).

2.3. Challenges of fringe projection profilometry in industrial practices

To realize high-speed 3D imaging with fringe projection, it is crucial to achieve high speeds for both
pattern projection and image acquisition. The advances in high-speed camera imaging technologies and
high-speed image projection technologies (e.g., the digital-light-process technology) have pushed the speed
limitation of the fringe projection technique to a capturing rate as fast as kilohertz with the help of bit-wise
sinusoidal signal generation through projector defocusing [36]. In the meantime, the real-time processing
speed of 3D reconstruction has been pushed to 30 Hz or more with the help of graphics processing
unit [27, 28, 29]. However, to make the fringe projection technique generate impact for industrial practices,
it is crucial to push the accuracy limit of this technology to industrial standards (e.g., a few micrometers)
while maintaining a decent measurement speed suitable for in-situ applications.
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One of the most important challenges for adopting the fringe projection technique in industrial or
manufacturing applications is the difficulty in measuring metallic surfaces. This is because metallic
surfaces are shiny and highly reflective in nature, which tends to generate a strong glare in camera images.
Although there are many high-dynamic-range (HDR) methods developed to address this challenge [37, 38],
it is still quite difficult even for the most advanced HDR fringe projection method to approach the high
measurement accuracies that a conventional fringe projection method can achieve when measuring a white
matte surface finish. In addition, the existence of dynamic motions in some operating manufacturing
machines could make the situation even worse. Therefore, research opportunities are present in this
area, and potential solutions may be sought by incorporating advanced machine learning technologies for
accuracy enhancement in metallic surface measurements [39, 40].

Another important challenge is the measurement of large structures in manufacturing practices.
Currently, the field of view of a single 3D scan using fringe projection is only around 1m2, scaling up this
field of view will bring significant value in many manufacturing applications, such as the inspection of large
manufactured parts or the generation of a full virtual representation of a manufacturing facility for digital
twin modeling. Despite the advances in relevant technologies such as multi-view scanning and panoramic
3D point cloud stitching, it is still quite challenging to finish the whole scanning process and robustly create
full 3D representations of a large manufacturing structure (with several meters of length/width) within
minutes to hours even with the most advanced fringe projection technique. Given this, opportunities are
present to combine robotic technologies with fringe projection and computer vision technologies for rapid
3D scans and digital modeling such that a full virtual representation of a manufacturing structure can be
established automatically within a relatively short period.

3. Some related manufacturing research and applications

This section shows some representative manufacturing research and applications that were induced by
fringe projection-based high-speed 3D optical sensing.

3.1. In-situ/in-process monitoring

Given the capability of refreshing fringe pattern images at a rate of 120 Hz or more (equaling
a 3D acquisition rate of 40 Hz or more) with digital-light-processing projectors nowadays, the
fringe projection-based 3D optical sensing technology has a high potential for applications related to
in-situ/in-process monitoring of manufacturing processes. One of the most promising directions in this
regard is to perform in-process monitoring for additive manufacturing processes. As identified in the field
of additive manufacturing, one of the most important challenges is to perform real-time identification of
defects such that one can decide to either stop the printing process or conduct corrective actions accordingly.
Enabling this will pose a combined requirement of measurement speeds (i.e., close to real-time) and
accuracies (i.e., at the micrometer level), providing research opportunities for the optics community.

Researchers have already attempted to employ fringe projection for in-situ monitoring of additive
manufacturing processes such as laser powder bed fusion (LPBF) [41, 42, 43, 44] or direct energy deposition
(DED) [45]. An example of using fringe projection for in-situ/in-process monitoring of a DED process
by the author’s research group [45] is shown in Fig. 3. Figure 3(a) shows the photograph of the physical
3D optical sensing system that was incorporated inside the envelope of a DED machine. The goal of this
system setup is to monitor the surface topography printing results right after each surface layer is printed.
Specifically, for this laboratory-made 3D optical sensing system, a FLIR Grasshopper Monochrome camera
(Model: GS3-U3-23S6M-C) and a telecentric lens (Opto-engineering TC4MHR036-C with a magnification
of 0.487) is used as the image acquisition unit. A digital-light-processing projector (Wintech 4500) was used
as the pattern projection device. The camera and projector resolutions were 1280 × 960 and 912 × 1140,
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Figure 3. An in-situ 3D optical sensing system developed for in-process monitoring of direct energy
deposition (DED) at Iowa State University. (a) The 3D optical sensing system incorporated inside the
envelope of a DED machine; (b) the layerwise surface topography data for an example of good printing;
(c) the layerwise surface topography data for an example of bad printing; (d) - (e) photographs of the bad
printing samples with top view and side view, respectively.

respectively. To ensure a high-quality 3D acquisition, an 18-step phase shifting method (N = 18 in Eq. 2) is
employed together with a gray-coding-based phase unwrapping strategy [46]. To avoid a nonlinear gamma
calibration for projecting 8-bit grayscale images, squared binary patterns along with a slight projector
defocusing [36] is applied to generate quasi-sinusoidal pattern profiles. The field-of-view of the entire 3D
imaging system is slightly smaller than the printing area, so no background filtering is necessary.

Figure 3(b) - (c) respectively show examples of a good printing and a bad printing process, from which
one can visualize that for a good printing process, the surface topography will show a uniform texture,
yet abrupt curvature changes will exhibit in the bad printing sample. From this example measurement
result, one can see the potential of using fringe projection-based 3D optical sensing for in-situ monitoring
of an additive printing process, given that the high-speed nature of the fringe projection technique requires
minimal time delay and interruption for the printing process.

3.2. Post-process quality assurance

3.2.1. Precision geometric profiling

For post-process quality assurance, the most straightforward application of 3D optical sensing is to
perform precision geometric profiling for post-manufacturing dimensional inspection. Specifically, for the
fringe projection technique, it has the capability to achieve accuracy at a 0.1 mm level with a one-meter
length scale [35] or an accuracy of a few micrometers with a length scale of a few centimeters [47].

Figure 4 shows an example of using the fringe projection technique for precision geometric profiling of
an industrial part (the inside of a hard disk). The system is composed of a FLIR Grasshopper Monochrome
camera (Model: GS3-U3-23S6M-C) attached to a pinhole lens with a 12 mm focal length, as well as a
digital-light-processing (DLP) projector (LightCrafter 4500). The camera and projector resolutions were
1280 × 960 and 912 × 1140, respectively. The same 3D reconstruction algorithms as used in the system
shown in Fig. 3 (i.e., 18-step phase shifting, gray-coding-based phase unwrapping, and binary patterns with
projector defocusing) were used in this application.
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(a) (b)

Figure 4. An example 3D geometric measurement result of an industrial part using fringe projection. (a)
The captured fringe image of a hard disk; (b) the corresponding reconstructed 3D result using the fringe
image (a).

Figure 4(a) - 4(b) respectively show the captured camera fringe image with pattern projection and
the corresponding reconstructed 3D geometric profile of the measured sample, from which one can see
that the local fine-scale features (e.g., screws, flange, etc.) can be visualized on the reconstructed 3D
geometry, showing the great potential of the fringe projection technique for rapid dimensional metrology
and inspection for industrial parts.

3.2.2. Morphology data analysis

Once the geometric profiles are reconstructed through optical fringe analysis, some key dimensional
features can be extracted through subsequent feature extraction such that a set of quality evaluation metrics
can be established. An example of morphological data analysis application for a civil additive manufacturing
process is shown in Fig. 5. In this application, the same system setup and the set of 3D reconstruction
algorithms as used in the application in Section 3.2.1 was employed, except that only three-step phase
shifting was used here (N = 3 in Eq. 2) due to its sufficient accuracy for measurements of non-metal
surfaces.

Figure 5(a) shows the designed 3D solid model for clay additive printing, and Fig. 5(b) - (c) show
different views of the actual printed structure. Figure 5(d) - (f) shows the reconstructed 3D geometries of
three representative 3D printed samples prepared for quality evaluation. Specifically for this application, a
set of evaluation metrics, including the deviations in layer width, layer thickness, height, outer diameter,
cross-sectional area, and surface angle, were used for printing quality assessments, where the best printing
quality is supposed to have the least deviations on these dimensions. Figure 5(g) shows the contour plots of
the evaluation metrics for the three printed samples, from which one can see that the sample with the best
visual quality (sample 1) has the least actual overall deviations. This application example demonstrates
how one can use the 3D geometric data obtained from 3D optical sensing for morphological data analysis
and quality assessments of manufactured products.

3.2.3. Characterization of surface integrity

Apart from the extraction of dimensional information, another type of important property that can be
identified from 3D optical sensing is the surface integrity which contains important information regarding
the areal surface or textural roughness information. An example of different surface textures produced by
different DED printing parameters is shown in Fig. 6. Given that surface quality plays a significant role
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Figure 5. An example of morphological data analysis using 3D optical sensing data for clay additive
printing. (a) The 3D solid model for the printing structure; (b) - (c) side and top views of the printed
structure; (d) - (f) side view of the reconstructed 3D geometry data for three different printed samples
with different printing configurations; (g) the contour plots of different dimensional features of the printed
samples. This picture is reprinted with permission from Reference [48]. Copyright Elsevier (2020).

on determining the functionality and durability of manufactured products, providing meaningful surface
characterization can be extremely important for surface engineering given that it can provide a better
understanding of the relationship between the surface processing parameters and the properties of the
corresponding surface finishes.

Table 1 illustrates a set of parameters that are useful in characterizing the areal roughness properties of
a manufactured surface finish. The top five rows are the basic areal roughness parameter that describes
the arithmetical mean height (Sa), root mean square height (Sq), maximum peak height (Sp), maximum
valley height (Sv), and maximum height (Sz = Sp + Sv) which are very intuitive from its definition. The
last two rows are parameters that describe the distributions of a surface. Specifically, the skewness value
(Ssk) indicates the deviation of the height distribution against the mean plane. A positive Ssk means the
height distribution is skewed above the mean plane, while a negative Ssk means the height distribution is
skewed below the mean plane. Such value will depict whether the surface is predominated by peaks or
valleys, as shown in Fig. 7(a). On the other hand, the kurtosis value (Sku) indicates the sharpness of the
peaks and valleys. As shown in Fig 7(b), a Sku value above 3 means that the surface is dominated by sharp
peaks or valleys, yet a Sku value below 3 means that the surface exhibits blunt peaks and valleys. These
surface roughness parameters can serve as important indicators for process enhancement and control to
improve surface integrity.

4. Summary

This paper has presented the advances in high-speed 3D optical sensing technology and its applications
to manufacturing research. A specific focus was set on the fringe projection technique as the most suitable
method for simultaneous high-speed and high-accuracy 3D shape measurements. Some representative
measurement examples were presented to introduce the applications of high-speed 3D optical sensing on
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 6. Examples of additive manufactured surfaces with different surface topographies. (a) - (h)
Photographs of the manufactured surfaces; (i) - (p) corresponding reconstructed surface topographies.

Table 1. Areal surface roughness parameters.

Notation Physical meaning Equation

Sa Arithmetical mean height 1
A
∫∫

A |z(x, y)|dxdy

Sq Room mean square height
√

1
A
∫∫

A |z2(x, y)|dxdy

Sp Maximum peak height |maxA z(x, y)|

Sv Maximum valley height |minA z(x, y)|

Sz Maximum height Sp + Sv

Ssk Skewness 1
S2

q

∫∫
A z3(x, y)dxdy

Sku Kurtosis 1
S4

q

∫∫
A z4(x, y)dxdy

both in-situ process monitoring and post-process quality assessments. The author hopes this paper will
introduce the potential applications of the fringe-projection-based high-speed 3D optical sensing technology
to the manufacturing community.
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Figure 7. Graphical representation of the physical meaning of (a) skewness Ssk and (b) kurtosis Sku.
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