Article

High-speed 3D optical sensing for manufacturing research and industrial sensing applications

Beiwen Li1,∗

1 Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA.
∗Correspondence: beiwen@iastate.edu

Received: 10 October 2022; Accepted: 19 November 2022; Published: 5 December 2022

Abstract: This paper presents examples of high-speed 3D optical sensing for research and applications in the manufacturing community. Specifically, this paper will focus on the fringe projection technique as a special technology that can be extremely beneficial to manufacturing applications, given its merits of simultaneous high-speed and high-accuracy 3D surface measurements. This paper will introduce the basic principles of 3D optical sensing based on the fringe projection technique as well as the enabled manufacturing research applications, including both in-situ/in-process monitoring and post-process quality assurance.

© 2022 by the authors. Published by Universidad Tecnológica de Bolívar under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. https://doi.org/10.32397/tesea.vol3.n2.490

1. Introduction

In the coming era of Industry 4.0 and smart manufacturing, the importance of smart sensors and sensing systems has been increasingly emphasized [1]. The recent advances in machine/computer vision technologies have produced new smart sensors and sensing systems impacting different aspects of manufacturing processes. Three-dimensional (3D) optical sensing technologies, which add one more dimension on top of conventional imaging and vision technologies, will provide a much greater impact to scientists and researchers in the field of smart manufacturing, given their ability to digitize the scenes being viewed in 3D [2, 3, 4].

For manufacturing processes, 3D optical sensing could impact aspects ranging from in-process monitoring and diagnosis to post-process quality inspection. Conventionally, a 3D optical sensing system is mostly used for post-manufacturing part dimensional inspections with precision static 3D geometric profiling. As a nondestructive method, 3D optical sensing can significantly increase the inspection speed, and throughput of traditional contact methods such as stylus profilometers or coordinate measuring machines (CMM) [5, 6]. However, as smart manufacturing puts more emphasis on in-process decision-making and closed-loop control, conventional static 3D optical sensing may no longer satisfy the requirement, given that real-time data acquisition and processing are needed. Taking the advanced additive manufacturing
technology as an example where in-process diagnosis plays a significant role, a real-time 3D optical sensing system can be extremely valuable if incorporated into the envelope of an additive printing machine to acquire the layer-by-layer surface topographies of the printed constructs \[7, 8\]. Achieving this, however, poses significant challenges for current 3D optical sensing techniques, given the combined requirements of high speeds and high accuracies for the measured 3D surface topographies.

Recent major advancements in computing power and graphics have drastically boosted the development of 3D optical sensing technologies \[9, 10\]. Capabilities (e.g., real-time measurements) that were barely even thought possible a few years ago are now being introduced into the field of 3D optical sensing. The 3D optical sensing approaches can be broadly divided into three major categories: interferometry, time-of-flight, and triangulation \[11\]. Interferometry \[12, 13, 14\] is by far the most accurate type of 3D optical metrology technique, which can achieve an accuracy as high as nanometers. However, interferometry typically has a limited range of measurements (e.g., at micrometer scale) and thus is typically used as a post-process inspection technology. Time-of-flight \[15, 16, 17, 18\] is a technique that emulates the echolocation of certain types of animals (e.g., a bat), where the depth or distance information is typically obtained by calculating the round-trip traveling time of emitted light source. This technology is generally well-suited for measuring a large scene (e.g., with a room size) and has been used in commercial products such as Microsoft Kinect V2 \[19\]. However, given the ultra-fast speed of light, it is difficult for the time-of-flight technology to detect a depth difference smaller than one millimeter, which can be vital to recognize small features on a surface. Triangulation-based approaches are the most suitable technology for measuring medium-scale objects (e.g., a length scale from 1 cm to 1 m). The three most well-known triangulation-based technologies include laser scanning \[20, 21, 22, 23\], stereo vision \[24, 25\] and structured light \[26, 9, 10\]. The laser scanning method performs line-by-line scanning to obtain the surface topography of the scene, whose performance can be reduced when trying to map a complicated surface containing fine-scale features. The stereo 3D vision method obtains the 3D information through correspondence matching and triangulation, yet the correspondence identification can be difficult when the imaged scene lacks rich features for stereo matching. The structured light 3D vision overcomes these limitations by performing simultaneous whole-area scanning with codified structured illumination. Specifically, the fringe projection method that uses continuous sinusoidal codifications has achieved real-time (e.g., 30 Hz) 3D imaging with tens of \(\mu\)m accuracy or higher \[27, 28, 29\]. Given its capability of characterizing small features with minimal time delay induced by 3D imaging and reconstruction, the fringe projection technique can be regarded as the most suitable technology for in-process monitoring and inspection for many manufacturing processes.

This paper will introduce the basics of high-speed 3D optical sensing and the perspectives of its related research and applications in the manufacturing community. Specifically, a major focus will be put on the high-speed fringe projection technique, given its capability of simultaneous high-speed and high-accuracy measurements. The perspectives on how high-speed and high-accuracy fringe projection-based 3D optical sensing could benefit the manufacturing research will also be introduced, including how one could use such technology for both in-situ/in-process monitoring and post-process quality assurance. Specifically, in-situ measurements of an additive manufacturing process (i.e., direct energy deposition) will be demonstrated as an example of in-situ/in-process monitoring; and examples of precision geometric profiling, morphological data analysis, and surface integrity characterizations will be demonstrated as practical cases for post-process quality assurance.

Section 2 introduces the theoretical foundations of high-speed 3D optical sensing, including the background and the basics of the fringe projection technique, the phase shifting technique as one of the most widely used fringe analysis techniques, and some challenges in applying the fringe projection technique for industrial practices. Section 3 introduces the related manufacturing research and applications,
which include both in-situ/in-process monitoring and post-process quality assurance. Section 4 will serve as an executive summary of this paper.

2. Principles of high-speed 3D optical sensing

2.1. Basics of the fringe projection technique

3D optical techniques have achieved great success in medicine, virtual reality, tele-surgery, and many other disciplines. Optical means to perform high-speed 3D shape measurements are typically based on triangulation (e.g., stereo vision, spacetime stereo, laser scanning, structured light). The driving principle is to recover depth by matching and geometrically relating distinct regions of a scene viewed from different angles. The structured light approach, which hinges on the projection of known structured patterns onto objects, has brought increased attention because of its flexibility, speed, accuracy, and its ability to measure surfaces without strong natural features [30]. However, its spatial resolution is limited to being larger than a projector’s pixel because of the need to encode artificial features using projector images [26].

The fringe projection technique is a variation of the structured light method where patterns with sinusoidally varying structures are illuminated. Sinusoidal structures have the advantage of being continuous and differentiable from neighboring pixels. Thus, high spatial resolutions at the camera-pixel-level can be achieved. Figure 1 shows a fringe projection system. The projector shines one-dimensional, sinusoidally varying stripes onto the sample object, and the camera captures the stripes distorted by the object’s surface geometry. Fringe analysis techniques such as the phase shifting method (to be introduced next) are employed to identify the pixel-to-pixel correspondence between a projector point and a camera image point. Finally, the 3D coordinates are computed by the triangulation relationship between the projection unit (A), the 3D object (B), and the image acquisition unit (C).

2.2. The phase shifting technique

The key to a high-quality 3D reconstruction for the fringe projection technique is to select an accurate fringe analysis technique. Many fringe analysis methods were developed in the optics community, including the single-shot Fourier transform method [31] and the multi-shot phase shifting method [32]. For industrial measurements, the phase shifting technique is preferred compared to the Fourier transform method, given...
its ability better resolve the details of complex geometries. The basic principle of phase shifting is to project a set of sinusoidal patterns with equal phase shifts applied and then capture the corresponding camera images. The mathematical description of the phase-shifting method can be written as follows:

$$I_i(x, y) = I'(x, y) + I''(x, y) \cos(\phi + \delta_i),$$

(1)

where $I_i(x, y)$ denotes the i-th captured fringe image as shown in Fig. 2(a) - 2(c) for a three-step ($i = 1, 2, 3$) phase shifting example; $I'(x, y)$ and $I''(x, y)$ respectively denote the average intensity and the intensity modulation; $\delta_i = 2i\pi/N$ denotes the phase shift added to the i-th fringe image. The phase map $\phi(x, y)$, which contains unique information regarding the object geometric profiles, can be obtained by solving simultaneous equations such that

$$\phi(x, y) = -\arctan \left(\frac{\sum_{i=1}^{N} I_i \sin(2i\pi/N)}{\sum_{i=1}^{N} I_i \cos(2i\pi/N)} \right).$$

(2)

The solved phase map $\phi(x, y)$ naturally contains 2π discontinuities given the nature of the arctangent function, as shown in Fig. 2(d). To remove such discontinuity and obtain an absolute phase map, one can employ a temporal phase unwrapping method [33, 34] to obtain a final absolute continuous phase map $\Phi(x, y)$.

$$\Phi(x, y) = \phi(x, y) + k(x, y) \times 2\pi.$$

(3)

After obtaining the absolute continuous phase map $\Phi(x, y)$ as shown in Fig. 2(e), a phase-to-3D coordinate conversion can be performed by treating both the camera and the projector as pinhole imaging systems [35], and the sample result can be found in Fig. 2(f).

2.3. Challenges of fringe projection profilometry in industrial practices

To realize high-speed 3D imaging with fringe projection, it is crucial to achieve high speeds for both pattern projection and image acquisition. The advances in high-speed camera imaging technologies and high-speed image projection technologies (e.g., the digital-light-process technology) have pushed the speed limitation of the fringe projection technique to a capturing rate as fast as kilohertz with the help of bit-wise sinusoidal signal generation through projector defocusing [36]. In the meantime, the real-time processing speed of 3D reconstruction has been pushed to 30 Hz or more with the help of graphics processing unit [27, 28, 29]. However, to make the fringe projection technique generate impact for industrial practices, it is crucial to push the accuracy limit of this technology to industrial standards (e.g., a few micrometers) while maintaining a decent measurement speed suitable for in-situ applications.
One of the most important challenges for adopting the fringe projection technique in industrial or manufacturing applications is the difficulty in measuring metallic surfaces. This is because metallic surfaces are shiny and highly reflective in nature, which tends to generate a strong glare in camera images. Although there are many high-dynamic-range (HDR) methods developed to address this challenge [37, 38], it is still quite difficult even for the most advanced HDR fringe projection method to approach the high measurement accuracies that a conventional fringe projection method can achieve when measuring a white matte surface finish. In addition, the existence of dynamic motions in some operating manufacturing machines could make the situation even worse. Therefore, research opportunities are present in this area, and potential solutions may be sought by incorporating advanced machine learning technologies for accuracy enhancement in metallic surface measurements [39, 40].

Another important challenge is the measurement of large structures in manufacturing practices. Currently, the field of view of a single 3D scan using fringe projection is only around 1m², scaling up this field of view will bring significant value in many manufacturing applications, such as the inspection of large manufactured parts or the generation of a full virtual representation of a manufacturing facility for digital twin modeling. Despite the advances in relevant technologies such as multi-view scanning and panoramic 3D point cloud stitching, it is still quite challenging to finish the whole scanning process and robustly create full 3D representations of a large manufacturing structure (with several meters of length/width) within minutes to hours even with the most advanced fringe projection technique. Given this, opportunities are present to combine robotic technologies with fringe projection and computer vision technologies for rapid 3D scans and digital modeling such that a full virtual representation of a manufacturing structure can be established automatically within a relatively short period.

3. Some related manufacturing research and applications

This section shows some representative manufacturing research and applications that were induced by fringe projection-based high-speed 3D optical sensing.

3.1. In-situ/in-process monitoring

Given the capability of refreshing fringe pattern images at a rate of 120 Hz or more (equalling a 3D acquisition rate of 40 Hz or more) with digital-light-processing projectors nowadays, the fringe projection-based 3D optical sensing technology has a high potential for applications related to in-situ/in-process monitoring of manufacturing processes. One of the most promising directions in this regard is to perform in-process monitoring for additive manufacturing processes. As identified in the field of additive manufacturing, one of the most important challenges is to perform real-time identification of defects such that one can decide to either stop the printing process or conduct corrective actions accordingly. Enabling this will pose a combined requirement of measurement speeds (i.e., close to real-time) and accuracies (i.e., at the micrometer level), providing research opportunities for the optics community.

Researchers have already attempted to employ fringe projection for in-situ monitoring of additive manufacturing processes such as laser powder bed fusion (LPBF) [41, 42, 43, 44] or direct energy deposition (DED) [45]. An example of using fringe projection for in-situ/in-process monitoring of a DED process by the author’s research group [45] is shown in Fig. 3. Figure 3(a) shows the photograph of the physical 3D optical sensing system that was incorporated inside the envelope of a DED machine. The goal of this system setup is to monitor the surface topography printing results right after each surface layer is printed. Specifically, for this laboratory-made 3D optical sensing system, a FLIR Grasshopper Monochrome camera (Model: GS3-U3-23S6M-C) and a telecentric lens (Opto-engineering TC4MHR036-C with a magnification of 0.487) is used as the image acquisition unit. A digital-light-processing projector (Wintech 4500) was used as the pattern projection device. The camera and projector resolutions were 1280 × 960 and 912 × 1140,
respectively. To ensure a high-quality 3D acquisition, an 18-step phase shifting method \(N = 18 \) in Eq. 2 is employed together with a gray-coding-based phase unwrapping strategy [46]. To avoid a nonlinear gamma calibration for projecting 8-bit grayscale images, squared binary patterns along with a slight projector defocusing [36] is applied to generate quasi-sinusoidal pattern profiles. The field-of-view of the entire 3D imaging system is slightly smaller than the printing area, so no background filtering is necessary.

Figure 3(b) - (c) respectively show examples of a good printing and a bad printing process, from which one can visualize that for a good printing process, the surface topography will show a uniform texture, yet abrupt curvature changes will exhibit in the bad printing sample. From this example measurement result, one can see the potential of using fringe projection-based 3D optical sensing for in-situ monitoring of an additive printing process, given that the high-speed nature of the fringe projection technique requires minimal time delay and interruption for the printing process.

3.2. Post-process quality assurance

3.2.1. Precision geometric profiling

For post-process quality assurance, the most straightforward application of 3D optical sensing is to perform precision geometric profiling for post-manufacturing dimensional inspection. Specifically, for the fringe projection technique, it has the capability to achieve accuracy at a 0.1 mm level with a one-meter length scale [35] or an accuracy of a few micrometers with a length scale of a few centimeters [47].

Figure 4 shows an example of using the fringe projection technique for precision geometric profiling of an industrial part (the inside of a hard disk). The system is composed of a FLIR Grasshopper Monochrome camera (Model: GS3-U3-23S6M-C) attached to a pinhole lens with a 12 mm focal length, as well as a digital-light-processing (DLP) projector (LightCrafter 4500). The camera and projector resolutions were 1280 × 960 and 912 × 1140, respectively. The same 3D reconstruction algorithms as used in the system shown in Fig. 3 (i.e., 18-step phase shifting, gray-coding-based phase unwrapping, and binary patterns with projector defocusing) were used in this application.
Figure 4. An example 3D geometric measurement result of an industrial part using fringe projection. (a) The captured fringe image of a hard disk; (b) the corresponding reconstructed 3D result using the fringe image (a).

Figure 4(a) - 4(b) respectively show the captured camera fringe image with pattern projection and the corresponding reconstructed 3D geometric profile of the measured sample, from which one can see that the local fine-scale features (e.g., screws, flange, etc.) can be visualized on the reconstructed 3D geometry, showing the great potential of the fringe projection technique for rapid dimensional metrology and inspection for industrial parts.

3.2.2. Morphology data analysis

Once the geometric profiles are reconstructed through optical fringe analysis, some key dimensional features can be extracted through subsequent feature extraction such that a set of quality evaluation metrics can be established. An example of morphological data analysis application for a civil additive manufacturing process is shown in Fig. 5. In this application, the same system setup and the set of 3D reconstruction algorithms as used in the application in Section 3.2.1 was employed, except that only three-step phase shifting was used here ($N = 3$ in Eq. 2) due to its sufficient accuracy for measurements of non-metal surfaces.

Figure 5(a) shows the designed 3D solid model for clay additive printing, and Fig. 5(b) - (c) show different views of the actual printed structure. Figure 5(d) - (f) shows the reconstructed 3D geometries of three representative 3D printed samples prepared for quality evaluation. Specifically for this application, a set of evaluation metrics, including the deviations in layer width, layer thickness, height, outer diameter, cross-sectional area, and surface angle, were used for printing quality assessments, where the best printing quality is supposed to have the least deviations on these dimensions. Figure 5(g) shows the contour plots of the evaluation metrics for the three printed samples, from which one can see that the sample with the best visual quality (sample 1) has the least actual overall deviations. This application example demonstrates how one can use the 3D geometric data obtained from 3D optical sensing for morphological data analysis and quality assessments of manufactured products.

3.2.3. Characterization of surface integrity

Apart from the extraction of dimensional information, another type of important property that can be identified from 3D optical sensing is the surface integrity which contains important information regarding the areal surface or textural roughness information. An example of different surface textures produced by different DED printing parameters is shown in Fig. 6. Given that surface quality plays a significant role
on determining the functionality and durability of manufactured products, providing meaningful surface characterization can be extremely important for surface engineering given that it can provide a better understanding of the relationship between the surface processing parameters and the properties of the corresponding surface finishes.

Table 1 illustrates a set of parameters that are useful in characterizing the areal roughness properties of a manufactured surface finish. The top five rows are the basic areal roughness parameter that describes the arithmetical mean height (S_a), root mean square height (S_q), maximum peak height (S_p), maximum valley height (S_v), and maximum height ($S_z = S_p + S_v$) which are very intuitive from its definition. The last two rows are parameters that describe the distributions of a surface. Specifically, the skewness value (S_{sk}) indicates the deviation of the height distribution against the mean plane. A positive S_{sk} means the height distribution is skewed above the mean plane, while a negative S_{sk} means the height distribution is skewed below the mean plane. Such value will depict whether the surface is predominated by peaks or valleys, as shown in Fig. 7(a). On the other hand, the kurtosis value (S_{ku}) indicates the sharpness of the peaks and valleys. As shown in Fig 7(b), a S_{ku} value above 3 means that the surface is dominated by sharp peaks or valleys, yet a S_{ku} value below 3 means that the surface exhibits blunt peaks and valleys. These surface roughness parameters can serve as important indicators for process enhancement and control to improve surface integrity.

4. Summary

This paper has presented the advances in high-speed 3D optical sensing technology and its applications to manufacturing research. A specific focus was set on the fringe projection technique as the most suitable method for simultaneous high-speed and high-accuracy 3D shape measurements. Some representative measurement examples were presented to introduce the applications of high-speed 3D optical sensing on
both in-situ process monitoring and post-process quality assessments. The author hopes this paper will introduce the potential applications of the fringe-projection-based high-speed 3D optical sensing technology to the manufacturing community.

Acknowledgments

The author would like to thank his former/current students (Dr. Vignesh Suresh, Dr. Yi Zheng, Mr. Weijun Shen, and Mr. Li-Hsin Yeh) and his research collaborators (Dr. Yiliang Liao, Dr. Minghui Zheng, Dr. Kejin Wang, and Dr. Hantang Qin) for their valuable suggestions and contributions. This research was funded by National Science Foundation Directorate for Engineering (CMMI-2132773). The views expressed here are those of the authors and are not necessarily those of the NSF.

Funding: National Science Foundation Directorate for Engineering (CMMI-2132773).

Disclosure statement: The author declares no conflict of interest.
Figure 7. Graphical representation of the physical meaning of (a) skewness Ssk and (b) kurtosis Sku.

References

