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Abstract—This paper proposes the application of the sine-
cosine algorithm (SCA) to the optimal design of a closed coil
helical spring. The optimization problem addressed corresponds
to the minimization of total spring volume subject to phys-
ical constraints that represents the closed coil helical spring
such as maximum working load, shear stress, and minimum
diameter requirements, among other. The resulting mathematical
formulation is a complex nonlinear and non-convex optimization
model that is typically addressed in literature with trial and
error methods or heuristic algorithms. To solve this problem
efficiently, the SCA is proposed in this research. This optimization
algorithm belongs to the family of the metaheuristic optimization
techniques, it works with controlled random processes guided by
sine and cosine trigonometric functions, that allows exploring and
exploiting the solution space in order to find the best solution
to the optimization problem. By presenting as main advantage
an easy implementation at any programming language using
sequential quadratic programming; eliminating the need to uses
specialized and costly software. Numerical results demonstrating
that the proposes SCA allows reaching lower spring volume
values in comparison with literature approaches, such as genetic
algorithms, particle swarm optimization methods, among others.
All the numerical simulations have been implemented in the
MATLAB software.

Index Terms—Mechanical analysis; machine elements design;
sine-cosine algorithm; nonlinear optimization model; closed coil
helical spring.

I. INTRODUCTION

THE design of mechanical elements for industrial machin-
ery is a complex and delicate task, since various factors

must be considered for its construction, such as: the efforts to
which the part will be subjected, the type of material to be
used, the correct geometry for the coupling of the elements,
among others [1]. Finding an adequate solution to the different
mechanical design problems requires time to simulate, manu-
facture and validate the different prototypes associated with the
part under analysis. This leads to an arduous and long process,
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in which time and financial resources must be invested [2].
The latter being the greatest limitation, since in many cases
companies do not have the resources to perform mechanical
resistance tests on the elements they design. In the indus-
trial field, mechanical design is important to provide quality
and safety in the manufacture of the components associated
with the different machines and equipment [3]. Mechanical
design can be divided into various stages: In the first stage,
a preliminary or conceptual design of the piece begins, in
addition, a vision of what is wanted is given with the necessary
measures. In the second stage, the simulation and analysis are
carried out, in which it is guaranteeing that the element will
be able to withstand the loads and stresses subjected, then
the prototyping is carried out to validate experimentally the
piece before to make the manufacture process; this ensures
that the element will not be affected by premature failure [4].
The first and second parts are responsibility of the designer,
in this way, the correct selection of materials and dimensions
of the element will depend on its manufacture cost and its
reliability. It is for the above that, various strategies have been
implemented for designing machine elements, by searching
the most appropriate solution for the design problem by
means of optimization techniques. These techniques perform
the minimization or maximization of an objective function,
starting from a defined solution space by a set of constraints;
so that from a mathematical model and the input parameters
it is possible to determine a good solution, with the aim
of reducing calculation times and improves the quality of
the solution compared to conventional design methods. An
example of optimal mechanical design, is the case presented
by [5], where the geometry of a stepped transmission shaft was
optimized by means of a continuous genetic algorithm (GA),
using the weight of the shaft as the objective and the maximum
deflection as a set of restrictions and the difference between the
diameters, this with respect to the coupling of the transmission
devices; finally, the authors validated the simulation results
with specialized design software by demonstrating that the so-
lution achieves represents an adequate solution to the problem
analysed. On the other hand, in [6] the authors implementing
a Rao algorithms to solve different engineering optimization
problems such as the design of a clutch disc, bearings, tube
exchanger, and casing, among others. Demonstrating that the
proposed method obtaining good solutions compared with
other conventional algorithms, in terms of computational time
and quality of the solution. A similar work is presented by
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[7], where the authors perform the optimization of different
engineering problems by using multiples objective functions,
such as: minimizing the weight of a spring, minimizing the
weight of a gear train, minimizing the weight of a welded
beam, and minimizing the volume of a tank. The solution
technique proposed by the authors is known as the chaotic
gray wolf, the solution method is compared with other articles
reported in the literature by demonstrating that the proposed
algorithm presented a good performance in comparison with
these; the authors do not report the times from the solution.
Another case is presented in [8], by using a multi objective
optimization for designing a helical spring, taking as objective
functions the minimization of the weight of the element and
the natural frequency. The set of constraints used both the
physical characteristics and forces that must support the spring
(as the dynamic constraints associated with load variation).
To solve this problem, the authors implemented a genetic
algorithm, a method based on sequential programming (active
set), interior point method, and a pattern search algorithm,
where it is highlighted that the last two do not perform a
total exploration of the solution space, so it can fall into local
optimal solutions. The authors report that the best solution is
founded by the Active set, but they do not compare processing
times.

These optimization cases make it clear that performing the
optimization of a complete machine is a complex task, is for
this reason that the literature is focused on the constructive
elements that are more prone to failure or that are widely
used regardless of the final application. Among these elements
are closed coil helical springs, which are used in suspensions,
damping systems, among others applications, this element
is subjected to different compression and traction forces by
supporting different forces and loads, both static and dynamic,
therefore that the correct operation of the device to which
it is attached depends on its correct sizing [9], [10]. It is
for the above that in the present work the minimization of
the volume of a closed coil helical spring is proposed and
as a solution method the application of the Sine and Cosine
algorithm which has presented good performance in terms of
the quality of the solution and computational times in other
mechanical applications.

Finally, the document is organized as follows: Section [?]
presents the mathematical formulation of the optimal design
of a closed coil helical spring. In section [?] the solution
technique is explained. Section [?] submits the results of the
algorithms and a comparison between them in terms of the
quality of the solution. Finally, conclusions and future work
are presented.

II. MATHEMATICAL MODELING

In this section is presented the general nonlinear and
non-convex optimization model for closed coil helical spring.
This mechanical component is depicted in Fig. 1, where two
variables are illustrated, i.e., d is the diameter of spring wire
and D is the mean coil diameter of the spring, both measured
in centimeters. Note that the main goal in this optimization
model is to minimize the volume of a closed coil helical

Fig. 1. Schematic drawing of a closed coil helical spring

spring considering several constraints. The mathematical
optimization model is completely described as follows:

The objective function regarding the total volume of the
spring is defined in Equation (1), where V is the objective
function value and Nc represents the number of active coils.

V =
(π
2

)2

(Nc + 2)Dd2, (1)

The shear stress must be less than the specified value and
can be formulated as presented in Equation (2).

πd3S − 8CfFmaxD ≥ 0, (2)

where Fmax is the maximum working load, S is the permis-
sible shear stress, and Cf is defined as follows:

Cf =
4C2 + 1.46C − 2.46

4C (C − 1)
, being C =

D

d
.

Regarding the configuration of the spring, it is worth men-
tioning that the free length must be less than a specified value.
The spring constant K can be defined as presented Equation
(3), where G is the shear modulus.

K =
Gd4

8NcD3
, (3)

Note that the deflection under maximum working load can
be calculated as defined in Equation (4).

δl =
Fmax

K
, (4)

It is assumed that the free length of the spring under the
maximum working load is α times the solid length. Based on
this assumption, the free length is given by (5).

lf = δl + α (Nc + 2) d, (5)

which implies, that the maximum length admissible for the
spring correspond to the mathematical expression presented in
(6), where lmax is a design parameter.

lmax − lf ≥ 0, (6)
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The wire diameter of the spring must be overpass a mini-
mum specified value dmin, which can be expressed mathemat-
ically as presented in Equation (7).

d− dmin ≥ 0, (7)

In addition, the outside diameter of the coil can not exceed a
maximum specified which is defined in Equation (8).

Dmax −D − d ≥ 0. (8)

Based on the physical characteristics of the spring the
diameter of the coil must be at least β times the diameter
of the spring to ensure that the spring is not tightly wound.
This physical constraint is formulated as follows:

C − β ≥ 0. (9)

In the preload operation the deflection of the spring must be
less than a specified quantity. The deflection of this condition
can be expressed as (10).

δp =
Fp

K
(10)

which implies that:

δpmax − δp ≥ 0. (11)

Observe that the combined deflection must be consistent
with the length and this can be formulated as presented in
Equation (12).

lf − dp ≥ 0, (12)

The deflection from preload to maximum load must be equal
to the design value as defined in Equation (13), being δω a
specified constant.

Fmax − Fp −Kδω ≥ 0, (13)

Finally, to solve efficiently the studied mathematical model
(1) to (13), the variables d, D and Nc are constrained with
box-type conditions as defined in Expression (14).

dmin ≤ d ≤ dmax,

Dmin ≤ D ≤ Dmax, (14)

Ncmin ≤ N ≤ Ncmax.

The parameters considering for the design of the closed coil
helical spring are reported in Table I. These parameters were
taken from [11].

III. SOLUTION TECHNIQUE

The mathematical optimization model presented from equa-
tions (1) to (14) is a complex nonlinear and non-convex
optimization problem, with continuous variables and a single
objective function. Due to the products and divisions between
decision variables is not possible to proposed a convex refor-
mulation that allows reaching the global optimum. However,
this problem can be solved with combinatorial optimization
techniques that allows dealing with the constraints via penalty
factors added to the objective function [12]. To address this

TABLE I
CONDITIONS OF THE DESIGN OF THE CLOSED COIL HELICAL SPRING

Parameter Value Unit
Fmax 453.6 kg
G 808543.6 kgf/cm2

lmax 35.56 cm
δω 3.175 cm

dmax 1.016 cm
Dmax 7.620 cm
Ncmax 25 —

S 13288.02 kgf/cm2

α 1.05 —
β 3 —

dmin 0.508 cm
Dmin 1.270 cm
Ncmin 15 —

nonlinear optimization problem in this research we propose the
application of the sine-cosine algorithm (SCA) [13], which is
completely described below.

The SCA is a methaeuristic optimization technique from the
family of the particle swarm optimization methods that takes
the advantages of the trigonometric sine and cosine function
to explore and exploit the solution space [14], [15]. The SCA
has been applied in different optimization problems such as:
optimal power flow analysis [16], [17], feature selection in
machine-learning algorithms [18], numerical optimization with
nonlinear non-convex functions [19], [20], among other; but
does not has been proposed for solving the problem addressed
in this paper, for which this is one of the mains contributions
of this research.

The main characteristics of the SCA for nonlinear optimiza-
tion are presented below.

A. Fitness function

The main advantage of using metaheuristic optimization
methods is the possibility of working in the infeasible solution
space to analyze some promissory regions of this space.
This relaxation can be made by using penalty factors in the
objective function, which transforms it into a fitness function
[17]. In the studied optimization problem, the proposed fitness
function is defined in (15):

zf =


V − θ1 min

{
0, πd3S − 8CfFmaxD

}
−

θ2 min {0, lmax − lf} − θ3 min {0, d− dmin}−
θ4 min {0, Dmax −D − d} − θ5 min {0, C − β}−
θ6 min {0, δpmax − δp} − θ7 min {0, lf − dp}−
θ8 min {0, Fmax − Fp −Kδω}


(15)

where θ1, ..., θ8 are penalty factors that allow controlling
the impact of exploring the infeasible solution space, being
all of them positive real numbers. Here we select for each
component a value of 100. Note that the fitness function can
be equal to the objective function (1) if the solution space is
totally feasible, i.e., all the constraints are satisfied.

Remark 1. The constraints regarding upper and lower bounds
of the decision variables d, D and Nc defined in (14) are
guarantee in the generation of all the potential solutions,
which implies that all of them are always feasible [11].
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B. Initial population

The SCA works with a population that evolves through the
solution spaces by using a random controlled procedure [21].
The initialization of the proposed optimization algorithm is
presented as follows:

Xt =


x11 x12 x13

x21 x22 x23

...
...

. . .
xn1 xn2 xn3

 , (16)

where n represents the number of individuals considered in
the population. Note that Xt represents the population at the
iteration t, xi1 represents the variable d, xi2 corresponds to
the variable D, and xi3 is associated with the variable Nc.

To guarantee the upper and lower bound of each decision
variable as defined in Equation (14), the following generation
rule the xij components in the initial population is considered:

xij = xmin
j + r1

(
xmax
j − xmin

j

)
∀j = 1, 2, 3,∀i = 1, 2, ..., n;

(17)

where ij represents the row i and column j in the matrix of the
initial population and r1 is a random number, i.e., r1 ∈ [0, 1].

C. Evolution criterion

The SCA optimization algorithm evolves by considering a
simple trigonometric rule. For doing so, let us consider that
the fitness function for all individuals contained in Xt has
been evaluated, then, the best individual of that population is
named xbest, Based on the best current solution, we select a
possible new candidate yt+1 or xt+1 that will replace Xt is
some conditions are fulfilled:

yt+1
i = xt

i + r2 sin (r3)
∣∣r4xbest − xt

i

∣∣ , i = 1, 2, ..., n,if δ ≥ 1

2
,

(18)

zt+1
i = xt

i + r2 cos (r3)
∣∣r4xbest − xt

i

∣∣ , i = 1, 2, ..., n,if δ <
1

2
,

(19)

being r3 and r4 random numbers between 0 to 1 and −π to
π, respectively, and r2 is entrusted of the convergence of the
algorithm, which can be calculated by using the equation (20).
Where tmax is the maximum number of iterations projected
for the optimization process.

r2 = 1− t

tmax
, (20)

Observed that yt+1
i and zt+1

i are the potential individuals
that will replace Xt

i . This substitution can be made as follows:
Select yt+1

i as a potential solution, if zf
(
yt+1
i

)
< zf (z

t
i);

Select zt+1
i as a potential solution, if zf

(
zt+1
i

)
< zf (y

t
i);

otherwise Xt+1
i = Xt

i . It is important to point out that if one
component of Xt+1

i does not fulfill its upper and lower bounds
defined in (14), then, this potential individual is adjusted
using (17) in order to preserve the feasibility of the current
population during the entire optimization procedure.

D. Finalization of the searching process

The searching process of the SCA stops if one of the
following criteria is fulfilled.

• If the maximum number of iteration is attained.
• If during kmax consecutive iterations the fitness does not

exhibit any improvement,

E. Algorithm implementation of the SCA

Finally, Algorithm 1 presents the steps required bu the SCA
for the optimal design of closed coil helical spring.

Data: Adjust parameters of the SCA
Generate the initial population Xt;
Evaluate all the individuals xt

i and find xbest;
for t = 1 : tmax do

for i = 1 : n do
Generate the potential individual yt+1

i and
zt+1
i ;

Evaluate yt+1
i and zt+1

i in the fitness function,
i.e., zf

(
yt+1
i

)
and zf

(
zt+1
i

)
;

Evaluate the replacing condition, for each
individual, and construct the descending
population Xt+1;

Evaluate the number of non-consecutive
improvements of zf ;

if k ≥ kmax then
Select the best solution contained in Xt+1;
Return the decision variables and the objective
function value;

break;

Result: Impress results
Algorithm 1: Proposed SCA for optimal designing of the
closed coil helical spring

IV. COMPUTATIONAL VALIDATION

The computational validation of the proposed SCA for the
volume minimization of a closed coil helical spring is made
in a desk-computer with an INTEL(R) Core(TM) i7 − 7700
processor at 3.60 GHz, 8 GB RAM, running a 64-bits in
Windows 10 environment. MATLAB programming software
version 2017b was employed to implement the optimization
procedure. To compare numerical results obtained by the
solution method proposed, different optimization algorithm
published in [11] have been employed. These optimization
methods are: Classical tuning method (conventional), genetic
algorithms (GA), particle swarm optimization (PSO), artifi-
cial bee colony (ABC), teaching-based learning optimization
(TBLO), and differential teaching-based learning optimization
(DTBLO).

Figure 2 is presented the objective function performance for
all the comparative methods and the proposed SCA.
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Fig. 2. Final volume of the closed coil helical spring with different
metaheuristics

From results in Figure 2 we can observed that:
✓ When the GA is compared with the conventional ap-

proach, it is possible to see that it has worse numerical
performance, this situation can be attributable to the
tuning of the searching parameters in the GA method,
which have affected negatively its performance.

✓ The proposed SCA improves the best objective function
value reported in literature by the DTBLO method, since
it passes from 46.30 cm3 to 45.92 cm3,i.e., an improve-
ment about 0.83 %.

✓ To reach the results reported by our proposed SCA
algorithm was used 1000 individuals in the population,
10000 iterations, which takes about 70 s to optimize
this problem, which finds the following final values for
the decision variables, i.e., d = 0.673914 cm, D =
2.403081 cm and Nc = 15.051533.

Figure 3 presents the histogram of the proposed SCA after
100 consecutive evaluations. Observe that there is 72 solutions
in this histogram with values lower than the best solution
reported by the DTBLO, which implies that our approach
has a 72 % of probabilities to improve that solution in only
one execution. In addition, there are also 10 solutions with
objective function values between 45.9 cm3 and 46 cm3, which
implies that all of them are the better solutions reported in the
literature at this moment in relation to the optimization of the
closed coil helical spring, which is a clear contribution to the
state-of-the-art in the area of mechanical components’ design.
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Fig. 3. Behavior of the SCA after 100 consecutive iterations

V. CONCLUSIONS

In this article, the optimal design of a closed coil helical
spring was carried out via the sin-cosine algorithm (SCA). As
objective function, the minimization of spring volume through
an adequate selection of the internal diameter, wire diameter,
and the number of active coils, by using as a set of constraints
the physical conditions that should be considered in the design
of helical springs that ensure a safe and reliable design. As
comparison methods were employed the GA, PSO, ABC,
TBLO and DTBLO proposed in the literature for solving the
problem addressed in this paper, in terms of quality of the
solution.

Computational simulations show that the proposed SCA
approach obtains the best result in terms of objective function
(volume of the helical spring), being 0.83 % better than
DTBLO method which corresponds to the best objective
function value reported in literature taking only 70 s to find
it. In addition, the statistical behavior of the SCA algorithm
has demonstrated that in a high percentage of evaluations
(i.e., 72 %) the solution reached by it is indeed better that
all the known literature reports, which clearly confirmed
the efficiency and robustness of this to deal with complex
non-linear and non-convex optimization problems with low
computational effort.

As future works it will be possible to make the following:
i) to extend the studied SCA to mechanical design problems
such as optimization of transmission shafts or optimal pulley
design; and ii) to apply new metaheuristic approaches to the
problem of the optimal design of the closed coil helical spring
such as vortex search algorithm and hurricane-based optimizer
in order to improve the quality of the solution reported in
this research. The construction of the transformer comprises 3
main steps: the core, the windings, and their assembly. Figure
1 depicts a flow diagram that contains an overview of the
construction and testing of the device, in which those 3 steps
are in yellow, blue, and red, respectively.
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